Abbati de Assis C, Greca LG, Ago M et al (2018) Techno-economic assessment, scalability, and applications of aerosol lignin micro- and nanoparticles. ACS Sustain Chem Eng 6:11853–11868. https://doi.org/10.1021/acssuschemeng.8b02151
CAS
Article
PubMed
PubMed Central
Google Scholar
Ago M, Huan S, Borghei M et al (2016) High-throughput synthesis of lignin particles (∼30 to ∼2000 nm) via aerosol flow reactor: Size fractionation and utilization in Pickering emulsions. ACS Appl Mater Interfaces 8:23302–23310. https://doi.org/10.1021/acsami.6b07900
CAS
Article
PubMed
Google Scholar
Ago M, Tardy BL, Wang L et al (2017) Supramolecular assemblies of lignin into nano- and microparticles. MRS Bull 42:371–378. https://doi.org/10.1557/mrs.2017.88
CAS
Article
Google Scholar
Artus GRJ, Jung S, Zimmermann J et al (2006) Silicone nanofilaments and their application as superhydrophobic coatings. Adv Mater 18:2758–2762. https://doi.org/10.1002/adma.200502030
CAS
Article
Google Scholar
Ávila HA, Ramajo LA, Góes MS et al (2013) Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning. ACS Appl Mater Interfaces 5:505–510. https://doi.org/10.1021/am302646z
CAS
Article
PubMed
Google Scholar
Balakshin MY, Capanema EA, Sulaeva I et al (2021) New opportunities in the valorization of technical lignins. Chemsuschem 14:1016–1036. https://doi.org/10.1002/cssc.202002553
CAS
Article
PubMed
Google Scholar
Beaumont M, Kondor A, Plappert S et al (2017) Surface properties and porosity of highly porous, nanostructured cellulose II particles. Cellulose 24:435–440. https://doi.org/10.1007/s10570-016-1091-y
CAS
Article
Google Scholar
Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 2:145–157. https://doi.org/10.1007/BF00813015
CAS
Article
Google Scholar
Berlin A, Balakshin M (2014) Chapter 18: industrial lignins—analysis, properties, and applications. In: Tuohy MG, Kubicek CP et al (eds) Gupta VK. Elsevier, Amsterdam, pp 315–336
Google Scholar
Blattmann CO, Pratsinis SE (2019) Nanoparticle filler content and shape in polymer nanocomposites. KONA Powder Part J 36:3–32. https://doi.org/10.14356/kona.2019015
CAS
Article
Google Scholar
Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141. https://doi.org/10.1016/j.indcrop.2004.04.016
CAS
Article
Google Scholar
Frangville C, Rutkevičius M, Richter AP et al (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243. https://doi.org/10.1002/cphc.201200537
CAS
Article
PubMed
Google Scholar
Fritz C, Salas C, Jameel H, Rojas OJ (2017) Self-association and aggregation of kraft lignins via electrolyte and nonionic surfactant regulation: stabilization of lignin particles and effects on filtration. Nord Pulp Pap Res J 32:572–585. https://doi.org/10.3183/npprj-2017-32-04_p572-585_rojas
CAS
Article
Google Scholar
Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266. https://doi.org/10.1007/BF00383453
CAS
Article
Google Scholar
Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375. https://doi.org/10.1016/j.ultsonch.2014.08.021
CAS
Article
PubMed
Google Scholar
Glasser WG (2019) About making lignin great again: some lessons from the past. Front Chem 7:565. https://doi.org/10.3389/fchem.2019.00565
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Ishikawa K (2020) Ultrahigh dielectric constant induced by the interfacial polarization between liquid crystal droplets and polymer matrix. Jpn J Appl Phys 59:60901. https://doi.org/10.35848/1347-4065/ab8f16
CAS
Article
Google Scholar
Kai D, Tan MJ, Chee PL et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200. https://doi.org/10.1039/C5GC02616D
CAS
Article
Google Scholar
Kämäräinen T, Ago M, Seitsonen J et al (2018) Harmonic analysis of surface instability patterns on colloidal particles. Soft Matter 14:3387–3396. https://doi.org/10.1039/C8SM00383A
Article
PubMed
Google Scholar
Kanimozhi K, Prabunathan P, Selvaraj V, Alagar M (2014) Vinyl silane-functionalized rice husk ash-reinforced unsaturated polyester nanocomposites. RSC Adv 4:18157–18163. https://doi.org/10.1039/C4RA01125B
CAS
Article
Google Scholar
Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
CAS
Article
Google Scholar
Klapiszewski L, Jamrozik A, Strzemiecka B et al (2017) Activation of magnesium lignosulfonate and kraft lignin: influence on the properties of phenolic resin-based composites for potential applications in abrasive materials. Int J Mol Sci 18:1224. https://doi.org/10.3390/ijms18061224
CAS
Article
PubMed Central
Google Scholar
Krishnadevi K, Grace AN, Alagar M, Selvaraj V (2013) Development of hexa (aminophenyl)cyclotriphosphazene-modified cyanate ester composites for high-temperature applications. High Perform Polym 26:89–96. https://doi.org/10.1177/0954008313500058
CAS
Article
Google Scholar
Kumar SA, Narayanan TSNS (2002) Thermal properties of siliconized epoxy interpenetrating coatings. Prog Org Coat 45:323–330. https://doi.org/10.1016/S0300-9440(02)00062-0
Article
Google Scholar
Lievonen M, Valle-Delgado JJ, Mattinen M-L et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18:1416–1422. https://doi.org/10.1039/C5GC01436K
CAS
Article
Google Scholar
Lloyd DR, Ward TC, Schreiber HP (1989) Inverse gas chromatography. American Chemical Society, Washington
Book
Google Scholar
Myint AA, Lee HW, Seo B et al (2016) One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem 18:2129–2146. https://doi.org/10.1039/C5GC02398J
CAS
Article
Google Scholar
Ngo T-D, Patenaude E, Ahvazi B (2019) Lignin bio-based material in unsaturated polyester. Cellul Chem Technol 53:435–448. https://doi.org/10.35812/CelluloseChemTechnol:2019.53.44
Article
Google Scholar
Nypelö TE, Carrillo CA, Rojas OJ (2015) Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of pickering systems and organic carriers for silver metal. Soft Matter 11:2046–2054. https://doi.org/10.1039/C4SM02851A
CAS
Article
PubMed
Google Scholar
Österberg M, Sipponen MH, Mattos BD, Rojas OJ (2020) Spherical lignin particles: a review on their sustainability and applications. Green Chem 22:2712–2733. https://doi.org/10.1039/D0GC00096E
Article
Google Scholar
Pylypchuk IV, Lindén PA, Lindström ME, Sevastyanova O (2020) New insight into the surface structure of lignin nanoparticles revealed by 1H liquid-state NMR spectroscopy. ACS Sustain Chem Eng 8:13805–13812. https://doi.org/10.1021/acssuschemeng.0c05119
CAS
Article
Google Scholar
Qian Y, Deng Y, Qiu X et al (2014) Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem 16:2156–2163. https://doi.org/10.1039/C3GC42131G
CAS
Article
Google Scholar
Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001
CAS
Article
Google Scholar
Rollings DE, Tsoi S, Sit JC, Veinot JGC (2007) Formation and aqueous surface wettability of polysiloxane nanofibers prepared via surface initiated, vapor-phase polymerization of organotrichlorosilanes. Langmuir 23:5275–5278. https://doi.org/10.1021/la063604a
CAS
Article
PubMed
Google Scholar
Strzemiecka B, Voelkel A (2012) Estimation of the work of adhesion by means of inverse gas chromatography for polymer complex systems. Int J Adhes Adhes 38:84–88. https://doi.org/10.1016/j.ijadhadh.2012.05.006
CAS
Article
Google Scholar
Tang L, Zhang J, Tang Y et al (2021) Polymer matrix wave-transparent composites: a review. J Mater Sci Technol 75:225–251. https://doi.org/10.1016/j.jmst.2020.09.017
Article
Google Scholar
Tardy BL, Richardson JJ, Guo J et al (2018) Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chem 20:1335–1344. https://doi.org/10.1039/C8GC00064F
CAS
Article
Google Scholar
van Asten A, van Veenendaal N, Koster S (2000) Surface characterization of industrial fibers with inverse gas chromatography. J Chromatogr A 888:175–196. https://doi.org/10.1016/S0021-9673(00)00487-8
Article
Google Scholar
Wang L, Liu C, Shen S et al (2020) Low dielectric constant polymers for high speed communication network. Adv Ind Eng Polym Res 3:138–148. https://doi.org/10.1016/j.aiepr.2020.10.001
Article
Google Scholar
Yeo J-S, Lee J-H, Hwang S-H (2017) Effects of lignin on the volume shrinkage and mechanical properties of a styrene/unsaturated polyester/lignin ternary composite system. Compos Part B Eng 130:167–173. https://doi.org/10.1016/j.compositesb.2017.07.084
CAS
Article
Google Scholar
Zhu JY, Agarwal UP, Ciesielski PN et al (2021) Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol Biofuels 14:114. https://doi.org/10.1186/s13068-021-01963-5
CAS
Article
PubMed
PubMed Central
Google Scholar