Skip to main content

Advertisement

Log in

Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) is an important platform chemical and used for the production of various biofuels and bio-based chemicals. Formic acid (FA) is a major product of biomass conversion and sustainable biomass-derived energy source for hydrogen production. Due to the growing demand for the use of renewable sources, cellulose-containing plant wastes/lignocelluloses can act as substrates for LA and FA production. Among various cellulose conversion strategies, solid acid appears to be a promising alternative for mineral acids recently. Hitherto only harsh conditions and strong mineral acids have been used for carbon solid acid synthesis. Therefore, recyclable non-corrosive catalysts with suitable thermal and chemical stability for cellulose hydrolysis are in great demand. Methane sulfonic acid (MSA) is a green acid since it is non-oxidizing, readily biodegradable, and less toxic than mineral acids. In this work, we have explored the use of this milder acid-based carbon solid acid catalyst synthesized from inedible mahua (Madhuca longifolia) oil cake through one-step hydrothermal synthesis and examined its efficiency for LA and FA production from cellulose. The catalyst was characterized using Raman spectroscopy, FTIR, BET, XPS, TGA, and XRD analysis. A drastic change in catalyst surface area from < 1 to 319 m2/g and acid site density (0–5.77 mmol/g) was achieved by increasing synthesis temperature above 240 °C which reflected in increased cellulose conversion to LA and FA. This indicated a need for significant change in synthesis temperature while using milder acids than the conventionally used temperature of 180 °C for strong acids. The increase in synthesis time to 24 h resulted in a catalyst with a good surface area of 367 m2/g. The use of high acid concentration for catalyst synthesis (1:4, oil cake: acid ratio) destroyed porous structures leading to reduced surface area (277 m2/g) and pore volume but increased the amount of catalyst acid sites. Interestingly, the lowering of LA and FA yield for this catalyst signified the importance of surface area and acid site concentration in determining the catalyst efficiency. The catalyst achieved efficient conversion of cellulose with an LA and FA yield of 38 and 65%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alatalo S-M, Pileidis F, Mäkilä E, Sevilla M, Repo E, Salonen J, Titirici M-M (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883

    Article  CAS  PubMed  Google Scholar 

  • Ania C, Parra J, Pis J (2002) Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process Technol 79(3):265–271

    Article  CAS  Google Scholar 

  • Aniya V, Kumari A, De D, Vidya D, Swapna V, Thella PK, Satyavathi B (2018) Translation of lignocellulosic waste to mesoporous solid acid catalyst and its efficacy in esterification of volatile fatty acid. Microporous Mesoporous Mater 264:198–207

    Article  CAS  Google Scholar 

  • Ansanay Y, Kolar P, Sharma-Shivappa R, Cheng J, Arellano C (2021) Pretreatment of switchgrass for production of glucose via sulfonic acid-impregnated activated carbon. Processes 9(3):504

    Article  CAS  Google Scholar 

  • Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350(6319):627–628

    Article  CAS  Google Scholar 

  • Boonyakarn T, Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Sasaki M, Laosiripojana N, Shotipruk A (2019) Enhanced levulinic acid production from cellulose by combined Brønsted hydrothermal carbon and Lewis acid catalysts. Ind Eng Chem Res 58(8):2697–2703

    Article  CAS  Google Scholar 

  • Braida WJ, Pignatello JJ, Lu Y, Ravikovitch PI, Neimark AV, Xing B (2003) Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol 37(2):409–417

    Article  CAS  PubMed  Google Scholar 

  • Capon B (1963) Intramolecular catalysis in glucoside hydrolysis. Tetrahedron Lett 4(14):911–913

    Article  Google Scholar 

  • Chen G, Fang B (2011) Preparation of solid acid catalyst from glucose–starch mixture for biodiesel production. Biores Technol 102(3):2635–2640

    Article  CAS  Google Scholar 

  • Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2–SiO2–Sm2O3. Biores Technol 102(3):3568–3570

    Article  CAS  Google Scholar 

  • Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310

    Article  CAS  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. Citeseer

  • Desimoni E, Brunetti B (2015) X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3(2):70–117

    Article  CAS  Google Scholar 

  • Díaz-Urrutia C, Ott T (2019) Activation of methane: a selective industrial route to methanesulfonic acid. Science 363(6433):1326–1329

    Article  PubMed  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  • Flores KP, Omega JLO, Cabatingan LK, Go AW, Agapay RC, Ju Y-H (2019) Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew Energy 130:510–523

    Article  CAS  Google Scholar 

  • Foo GS, Van Pelt AH, Krötschel D, Sauk BF, Rogers AK, Jolly CR, Yung MM, Sievers C (2015) Hydrolysis of cellobiose over selective and stable sulfonated activated carbon catalysts. ACS Sustain Chem Eng 3(9):1934–1942

    Article  CAS  Google Scholar 

  • Forzatti P, Lietti L (1999) Catalyst Deactivation. Catal Today 52(2–3):165–181

    CAS  Google Scholar 

  • Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135(11):4398–4402

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Yu G, Wang Y, Zhu Y (2012) Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid. Appl Catal A 427:137–144

    Article  Google Scholar 

  • Gong R, Ma Z, Wang X, Han Y, Guo Y, Sun G, Li Y, Zhou J (2019) Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Adv 9(50):28902–28907

    Article  CAS  Google Scholar 

  • Guzmán I, Heras A, Guemez MB, Iriondo A, Cambra JF, Requies J (2016) Levulinic acid production using solid-acid catalysis. Ind Eng Chem Res 55(18):5139–5144

    Article  Google Scholar 

  • Hara M (2010) Biomass conversion by a solid acid catalyst. Energy Environ Sci 3(5):601–607

    Article  CAS  Google Scholar 

  • Hu L, Tang X, Wu Z, Lin L, Xu J, Xu N, Dai B (2015) Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem Eng J 263:299–308

    Article  CAS  Google Scholar 

  • Ibrahim SF, Asikin-Mijan N, Ibrahim ML, Abdulkareem-Alsultan G, Izham SM, Taufiq-Yap Y (2020) Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manag 210:112698

    Article  CAS  Google Scholar 

  • Iguchi M, Onishi N, Himeda Y, Kawanami H (2019) Ligand effect on the stability of water-soluble iridium catalysts for high-pressure hydrogen gas production by dehydrogenation of formic acid. ChemPhysChem 20(10):1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Kitano M, Arai K, Kodama A, Kousaka T, Nakajima K, Hayashi S, Hara M (2009) Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal Lett 131(1):242–249

    Article  CAS  Google Scholar 

  • Konwar LJ (2016) New biomass derived carbon catalysts for biomass valorization

  • Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev 29:546–564

    Article  CAS  Google Scholar 

  • Konwar LJ, Das R, Thakur AJ, Salminen E, Mäki-Arvela P, Kumar N, Mikkola JP, Deka D (2014) Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J Mol Catal A Chem 388:167–176

    Article  Google Scholar 

  • Kumar VB, Pulidindi IN, Gedanken A (2015) Selective conversion of starch to glucose using carbon based solid acid catalyst. Renew Energy 78:141–145

    Article  CAS  Google Scholar 

  • Ma H, Li J, Liu W, Cheng B, Cao X, Mao J, Zhu S (2014) Hydrothermal preparation and characterization of novel corncob-derived solid acid catalysts. J Agric Food Chem 62(23):5345–5353

    Article  CAS  PubMed  Google Scholar 

  • Malins K, Brinks J, Kampars V, Malina I (2016) Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl Catal A 519:99–106

    Article  CAS  Google Scholar 

  • Mardhiah HH, Ong HC, Masjuki H, Lim S, Pang YL (2017) Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers Manag 144:10–17

    Article  CAS  Google Scholar 

  • Meramo Hurtado SI, Puello P, Cabarcas A (2021) Technical evaluation of a levulinic acid plant based on biomass transformation under techno-economic and exergy analyses. ACS Omega 6(8):5627–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Dumont MJ (2016) Levulinic acid production from starch using microwave and oil bath heating: a kinetic modeling approach. Ind Eng Chem Res 55(33):8941–8949

    Article  CAS  Google Scholar 

  • Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2(7):1296–1304

    Article  CAS  Google Scholar 

  • Namchot W, Panyacharay N, Jonglertjunya W, Sakdaronnarong C (2014) Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts. Fuel 116:608–616

    Article  CAS  Google Scholar 

  • Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045

    Article  CAS  Google Scholar 

  • Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44

    CAS  Google Scholar 

  • Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5(3):2421–2427

    Article  CAS  Google Scholar 

  • Shrotri A, Kobayashi H, Fukuoka A (2016) Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose. Chemsuschem 9(11):1299–1303

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Nawaz Z, Gao J, Liao Y, Zhang Q, Wang D, Wang J (2010) Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation. Biores Technol 101(14):5374–5384

    Article  CAS  Google Scholar 

  • Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5(5):6889–6894

    Article  CAS  Google Scholar 

  • Song X-L, Fu X-B, Zhang C-W, Huang W-Y, Zhu Y, Yang J, Zhang Y-M (2012) Preparation of a novel carbon based solid acid catalyst for biodiesel production via a sustainable route. Catal Lett 142(7):869–874

    Article  CAS  Google Scholar 

  • Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793

    Article  CAS  PubMed  Google Scholar 

  • Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12(6):1029–1034

    Article  CAS  Google Scholar 

  • Szabolcs Á, Molnár M, Dibó G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15(2):439–445

    Article  CAS  Google Scholar 

  • Van Dam H, Kieboom A, Van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch Stärke 38(3):95–101

    Article  Google Scholar 

  • Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly (arylene oxindole) s. Energy Environ Sci 4(9):3601–3610

    Article  Google Scholar 

  • Volli V, Singh R (2012) Production of bio-oil from mahua de-oiled cake by thermal pyrolysis. J Renew Sustain Energy 4(1):013101

    Article  Google Scholar 

  • Wang P, Zhan SH, Yu HB (2010) Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Paper presented at the Advanced Materials Research

  • Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574

    Article  CAS  Google Scholar 

  • Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113(8):3181–3188

    Article  CAS  Google Scholar 

  • Yan L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4(45):23492–23504

    Article  CAS  Google Scholar 

  • Yang H, Wang L, Jia L, Qiu C, Pang Q, Pan X (2014) Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions. Ind Eng Chem Res 53(15):6562–6568

    Article  CAS  Google Scholar 

  • Yu H, Niu S, Lu C, Li J, Yang Y (2016) Preparation and esterification performance of sulfonated coal-based heterogeneous acid catalyst for methyl oleate production. Energy Convers Manag 126:488–496

    Article  CAS  Google Scholar 

  • Zeng D, Zhang Q, Chen S, Liu S, Wang G (2016) Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater 219:54–58

    Article  CAS  Google Scholar 

  • Zhang B, Ren J, Liu X, Guo Y, Guo Y, Lu G, Wang Y (2010) Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catal Commun 11(7):629–632

    Article  CAS  Google Scholar 

  • Zhou Y, Niu S, Li J (2016) Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers Manag 114:188–196

    Article  CAS  Google Scholar 

  • Zhu S, Xu J, Cheng Z, Kuang Y, Wu Q, Wang B, Gao W, Zeng J, Li J, Chen K (2020) Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B Environ 268:118732

    Article  Google Scholar 

  • Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–437

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank SASTRA Deemed University for providing infrastructure and research facilities for the successful completion of this research work. The authors gratefully thank the Department of Science and Technology for support through FIST programme (Grant: SR/FST/ETI-331/2013). The first author thanks SASTRA Deemed University for the financial support through the Teaching Assistant fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the study conception and design. Miss. Sujithra Balasubramanian performed material preparation and data collection. Both the authors performed data analysis. The first draft of the manuscript was written by Miss. Sujithra Balasubramanian and all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ponnusami Venkatachalam.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, S., Venkatachalam, P. Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals. Cellulose 29, 1509–1526 (2022). https://doi.org/10.1007/s10570-022-04419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04419-7

Keywords

Navigation