Skip to main content

Advertisement

Log in

Preparation of cellulose beads with high homogeneity, low crystallinity, and tunable internal structure

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The preparation of cellulose beads has attracted much attention in the application of advanced green materials. Herein, the uniform and controllable cellulose beads were prepared by first dissolving the pulp into N-methylmorpholine N-oxide (NMMO), and then regenerated in various coagulation baths (water, alcohol, acid, NMMO, etc.). Results showed that the crystalline structure of regenerated cellulose changed from cellulose I to cellulose II. Besides, the cellulose beads regenerated in Methanol (MT-cellulose bead) had the highest porosity (90.51%) and crystallinity (62.59%). Laser confocal microscopy was employed to reveal the coagulation mechanism of cellulose beads, and the solidification process was carried out from the inside to the outside. This is a green and facile method for preparing cellulose beads with different structures and properties that can be widely used in absorbent materials, energy storage materials, and protein chromatography.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ass B, Belgacem MN, Frollini E (2006) Mercerized linters cellulose: characterization and acetylation in N, N-dimethylacetamide/lithium chloride. Carbohyd Polym 63:19–29

    CAS  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Wagberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25:7675–7685

    CAS  PubMed  Google Scholar 

  • Bodachivskyi I, Kuzhiumparambil U, Williams D (2017) Acid-catalyzed conversion of carbohydrates into value-added small molecules in aqueous media and ionic liquids. Chemsuschem 11:642–660

    Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    CAS  Google Scholar 

  • Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem 124:2118–2121

    Google Scholar 

  • Cao J, Li J, Chen Y, Zhang L, Zhou J (2018) Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv Func Mater 28:1800739

    Google Scholar 

  • Carrick C, Pendergraph S, Wagberg L (2014) Nanometer smooth, macroscopic spherical cellulose probes for contact adhesion measurements. ACS Appl Mater Interfaces 6(23):20928–20935

    CAS  PubMed  Google Scholar 

  • Chanzy H, Dubé M, Marchessault RH (1979) Crystallization of cellulose with N-methylmorpholine N-oxide: a new way of texturing cellulose. J Polym Sci Polym Lett Ed 17:219–226

    CAS  Google Scholar 

  • Cheng L, Young T, Chuang W, Chen L, Chen L (2001) The formation mechanism of membranes prepared from the nonsolvent–solvent–crystalline polymer systems. Polymer 42:443–451

    CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    CAS  Google Scholar 

  • French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • From M, Larsson P, Bo A, Medronho B, Norgren M (2020) Tuning the properties of regenerated cellulose: effects of polarity and water solubility of the coagulation medium. Carbohyd Polym 236:116068

    Google Scholar 

  • Gao S, Wang J, Jin Z (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohyd Polym 87:1020–1025

    CAS  Google Scholar 

  • Gu R, Yun H, Chen L, Wang Q, Huang X (2020) Regenerated cellulose films with amino-terminated hyperbranched polyamic anchored nanosilver for active food packaging. ACS Appl Bio Mater 3:602–610

    CAS  PubMed  Google Scholar 

  • Heinze T, Koschella A (2006) Solvents applied in the field of cellulose chemistry-a mini review. Polim Ciencia e Tecnol 15:84–89

    Google Scholar 

  • Huang Z, Liu C, Feng X, Wu M, Li B (2020) Effect of regeneration solvent on the characteristics of regenerated cellulose from lithium bromide trihydrate molten salt. Cellulose 27:1–14

    Google Scholar 

  • Hui W, Hong X, Hai D, Xu W, Wei L, Ya D, Xiao Z, Lin S, Xin Z, Chuan S (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohyd Polym 239:116233

    Google Scholar 

  • Jiang X, Wang S, Ge L, Lin F, Liu Q, Wang T, Lu B (2017) Development of organic-inorganic hybrid beads from sepiolite and cellulose for effective adsorption of malachite green. RSC ADV 7:38965–38972

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  • Korpela A, Kunnari V, Orelma H, Harlin A, Suurnakki A (2017) Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation. Cellulose 24:1691–1704

    Google Scholar 

  • Krysztof M, Olejnik K, Kulpinski P, Stanislawska A, Khadzhynova S (2018) Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials. Cellulose 25:3595–3607

    CAS  Google Scholar 

  • Kumar G, Bakonyi P, Periyasamy S (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728–737

    CAS  Google Scholar 

  • Li H, Kruteva M, Mystek K, Dulle M, Wågberg L (2020) Macro- and micro- structural evolution during drying of regenerated cellulose beads. ACS Nano 14:6774–6784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Vincent Edwards J, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328

    CAS  Google Scholar 

  • Liu YR, Thomsen K, Nie Y, Zhang SJ, Meyer AS (2016) Predictive screening of ionic liquids for dissolving cellulose and experimental verification. Green Chem 18:6246–6254

    CAS  Google Scholar 

  • Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B, Zhang X (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118220

    Article  Google Scholar 

  • Lucile D, Philipp N, Barbara M, Tatiana B (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002

    Google Scholar 

  • Luo X, Yuan J, Liu Y, Liu C, Zhu X, Dai X, Ma Z, Wang F (2017) Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water: batch and fixed-bed column performance and adsorption mechanism. ACS Sustain Chem Eng 5:5108–5117

    CAS  Google Scholar 

  • Mystek K, Li H, Pettersson T, Françon H, Svagan AJ, Larsson PA, Wågberg L (2020a) Wet-expandable capsules made from partially modified cellulose. Green Chem 22:4581–4592

    CAS  Google Scholar 

  • Mystek K, Reid MS, Larsson PA, Wågberg L (2020b) In situ modification of regenerated cellulose beads: creating all-cellulose composites. Ind Eng Chem Res 59:2968–2976

    CAS  Google Scholar 

  • Nguyen HVD, Vries RD, Stoyanov SD (2020) Natural deep eutectics as a “Green” cellulose cosolvent. Acs Sustain Chem Eng 8:14166–14178

    CAS  Google Scholar 

  • Onwukamike K, Lapuyade L, Maille L, Grelier S, Grau E, Cramail H, Meier M (2019) Sustainable approach for cellulose aerogel preparation from the DBU–CO 2 switchable solvent. Acs Sustain Chem Eng 7:3329–3338

    CAS  Google Scholar 

  • Protz R, Lehmann A, Ganster J, Fink HP (2020) Solubility and spinnability of cellulose-lignin blends in aqueous NMMO. Carbohyd Polym 251:117027

    Google Scholar 

  • Qiu C, Zhu K, Zhou X, Luo L, Zeng J, Huang R, Lu A, Liu X, Chen F, Zhang L (2018) The influences of coagulation conditions on the structure and properties of regenerated cellulose filaments via wet-spinning in LiOH/urea solvent. Acs Sustain Chem Eng 6:4056–4067

    CAS  Google Scholar 

  • Song J, Guo J, Zhang S, Gong Y (2018) Properties of cellulose/Antarctic krill protein composite fibers prepared in different coagulation baths. Int J Biol Macromol 114:334–340

    CAS  PubMed  Google Scholar 

  • Wang W, Wang M, Huang J, Tang N, Dang Z, Shi Y, Zhaohe M (2019) Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J Energy Inst 92:1997–2003

    CAS  Google Scholar 

  • Wang W, Wang X, Ma Z, Duan C, Ni Y (2021) Breaking the lignin conversion bottleneck for multiple products: co-production of aryl monomers and carbon nanospheres using one-step catalyst-free depolymerization. Fuel 285:119211

    CAS  Google Scholar 

  • Wu H, Hu S, Nie C, Zhang J, Wang J (2020) Fabrication and characterization of antibacterial epsilon-poly-L-lysine anchored dicarboxyl cellulose beads. Carbohyd Polym 255:117337

    Google Scholar 

  • Wu S, Gong Y, Liu S, Pei Y, Luo X (2021) Functionalized phosphorylated cellulose microspheres: design, characterization and ciprofloxacin loading and releasing properties. Carbohyd Polym 254:117421

    CAS  Google Scholar 

  • Xie H, Zou Z, Du H, Zhang X, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohyd Polym 223:115116

    CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Biores Technol 100:2580–2587

    CAS  Google Scholar 

  • Zhang B, Azuma J, Uyama H (2015a) Preparation and characterization of a transparent amorphous cellulose film. RSC Adv 5:2900–2907

    CAS  Google Scholar 

  • Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2015b) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5:6505–6511

    CAS  Google Scholar 

  • Zhang L, Lu H, Yu J, Wang Z, Fan Y, Zhou X (2017a) Dissolution of lignocelluloses with a high lignin content in a N-methylmorpholine-N-oxide monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65:9587–9594

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhai T, Turng L (2017b) Aerogel microspheres based on cellulose nanofibrils as potential cell culture scaffolds. Cellulose 24:2791–2799

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [31370578, 31800497]. We thank Lin Li (Canada, graduated from University of British Columbia) for its linguistic assistance during the grammar revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinping Li or Wenliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Li, X., Yuan, Y. et al. Preparation of cellulose beads with high homogeneity, low crystallinity, and tunable internal structure. Cellulose 29, 1473–1485 (2022). https://doi.org/10.1007/s10570-021-04413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04413-5

Keywords

Navigation