Bikales NM, Segal L (1971) Cellulose and cellulose derivatives, vols Iv–V. Wiley Intersciense, New York, USA, p 510
Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Castro GR (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technol 213:172–180. https://doi.org/10.1016/j.biortech.2016.02.071
CAS
Article
Google Scholar
Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91. https://doi.org/10.1007/s10570-015-0802-0
CAS
Article
Google Scholar
Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R (2016) Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol 220:63–72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
CAS
Article
PubMed
Google Scholar
Cheng Z, Yang RD, Liu X (2016) Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-carbon source. Bioresources 12(1):1190–1200. https://doi.org/10.15376/biores.12.1.1190-1200
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
CAS
Article
Google Scholar
French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27(10):5445–5448. https://doi.org/10.1007/s10570-020-03172-z
Article
Google Scholar
Gama M, Dourado F, Bielecki S (2016) Bacterial nanocellulose from biotechnology to bio-economy. Elsevier, Amsterdam, Netherlands, p 260
Book
Google Scholar
Goelzer FDE, Faria-Tischer PCS, Vitorino JC, Sierakowski MR, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mat Sci Eng A-Struct 29(2):546–551. https://doi.org/10.1016/j.msec.2008.10.013
CAS
Article
Google Scholar
Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA, Rajeev B (2012) Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. Int Food Res J 19(1):109–117
Guo X, Cavka A, Jönsson L, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:1–14. https://doi.org/10.1186/1475-2859-12-93
CAS
Article
Google Scholar
Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352
CAS
Article
Google Scholar
Hong F, Zhu XY, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86(5):675–680. https://doi.org/10.1002/jctb.2567
CAS
Article
Google Scholar
Hu F, Ragauskas A (2012) Pretreatmentand lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066. https://doi.org/10.1007/s12155-012-9208-0
CAS
Article
Google Scholar
Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a revie. Cellulose 26(5):2895–2911. https://doi.org/10.1007/s10570-019-02307-1
CAS
Article
Google Scholar
Kashcheyeva EI, Gismatulina YA, Budaeva VV (2019) Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 11(10):1645. https://doi.org/10.3390/polym11101645
CAS
Article
PubMed Central
Google Scholar
Kashcheyeva EI, Skiba EA, Zolotukhin VN, Budaeva VV (2020) Recycling of nitric acid solution in chemical pretreatment of oat hulls for biorefining, BioResources 15(1):1575–1586. https://doi.org/10.15376/biores.15.1.1575-1586
Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150–160. https://doi.org/10.4172/2155-9821.1000150
CAS
Article
Google Scholar
Kim TH (2013) Pretreatment of lignocellulosic biomass. In: Yang ST, El-Enshasy HA, Thongchul N, Martin Y (eds) Bioprocessing technologies in integrated biorefinery for production of biofuels, biochemicals, and biopolymers from biomass. Wiley, New York, pp 91–109
Google Scholar
Kiziltas EE, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr Polym 124:131–138. https://doi.org/10.1016/j.carbpol.2015.01.036
CAS
Article
PubMed
Google Scholar
Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Rauchfuss F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21(7):720–748. https://doi.org/10.1016/j.mattod.2018.02.001
CAS
Article
Google Scholar
Li W, Zhang S, Zhang T, Shen Y, Han L, Peng Z, Xie Z, Zhong C, Jia S (2021) Bacterial cellulose production from ethylenediamine pretreated Caragana korshinskii Kom. Ind Crop Prod 164:113340. https://doi.org/10.1016/j.indcrop.2021.113340
CAS
Article
Google Scholar
Mankar AR, Pandey A, Modak A, Pant KK (2021) Pre-treatment of lignocellulosic biomass: a review on recent advances. Bioresource Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235
CAS
Article
Google Scholar
Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD (2014) Sequence-based analysis of the bacterial and fungal Compositions of multiple kombucha (tea fungus) samples. Food Microbiol 38:171–178. https://doi.org/10.1016/j.fm.2013.09.003
CAS
Article
PubMed
Google Scholar
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, Vera JP, Kozyrovska N (2021) Bacterial cellulose retains robustness but its synthesis declines after exposure to a Mars-like environment simulated outside the international space station. Astrobiology 21(6):706–717. https://doi.org/10.1089/ast.2020.2332
CAS
Article
PubMed
Google Scholar
Pacheco G, Nogueira CR, Meneguin AB, Trovatti E, Silva MCC, Machado RTA, Ribeiro SJL, Filho ECS, Baruda HS (2017) Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind Crop Prod 107:13–19. https://doi.org/10.1016/j.indcrop.2017.05.026
CAS
Article
Google Scholar
Pillai MM, Tran HN, Sathishkumar G, Manimekalai K, Yoon JH, Lim DY, Noh I, Bhattacharyya A (2021) Symbiotic culture of nanocellulose pellicle: a potential matrix for 3D Bioprinting. Mat Sci Eng C-Bio S 119:111552. https://doi.org/10.1016/j.msec.2020.111552
CAS
Article
Google Scholar
Provin AP, dos Reis VO, Hilesheim SE, Bianchet RT, de Aguiar Dutra AR, Cubas ALV (2021) Use of bacterial cellulose in the textile industry and the wettability challenge—a review. Cellulose 28:8255–8274. https://doi.org/10.1007/s10570-021-04059-3
CAS
Article
Google Scholar
Shi QS, Feng J, Li WR, Zhou G, Chen AM, Ouyang YS, Chen YB (2013) Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter Intermedius BC-41. Cell Chem Technol 47(7–8):503–508
CAS
Google Scholar
Skiba EA, Budaeva VV, Baibakova OV, Zolotukhin VN, Sakovich GV (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125. https://doi.org/10.1016/j.bej.2016.09.003
CAS
Article
Google Scholar
Skiba EA, Budaeva VV, Ovchinnikova EV, Gladysheva EK, Kashcheyeva EI, Pavlov IN, Sakovich GV (2020) A technology for pilot production of bacterial cellulose from oat hulls. Chem Eng J 383:123128. https://doi.org/10.1016/j.cej.2019.123128
CAS
Article
Google Scholar
Skiba EA, Gladysheva EK, Golubev DS, Budaeva VV, Aleshina LA, Sakovich GV (2021) Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass. Carbohydr Polym 252:117178. https://doi.org/10.1016/j.carbpol.2020.117178
CAS
Article
Google Scholar
Thaveemas P, Chuenchom L, Kaowphong S, Techasakul S, Saparpakorn P, Dechtrirat D (2021) Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. Bioresource Technol 333:125184. https://doi.org/10.1016/j.biortech.2021.125184
CAS
Article
Google Scholar
United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis. World Agricultural Production (Circular Series WAP 11–19). https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed November 2019
Urbina L, Corcuera MÁ, Gabilondo N, Eceiza A, Retegi A (2021) A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose 28:8229–8253. https://doi.org/10.1007/s10570-021-04020-4
CAS
Article
Google Scholar
Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. https://doi.org/10.1007/s10924-012-0541-3
CAS
Article
Google Scholar
Velásquez-Riaño M, Bojacá V (2017) Production of bacterial cellulose from alternative low-cost substrates. Cellulose 24(7):2677–2698. https://doi.org/10.1007/s10570-017-1309-7
CAS
Article
Google Scholar
Villaverde JJ, Domingues RMA, Freire CSR, Silvestre AJD, Pascoal Neto C, Ligero P, Vega A (2009) Miscanthus×giganteus extractives: a source of valuable phenolic compounds and sterols. J Agric Food Chem 57:3626–3631. https://doi.org/10.1021/jf900071t
CAS
Article
PubMed
Google Scholar
Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskay EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68. https://doi.org/10.1016/j.polymertesting.2017.10.023
CAS
Article
Google Scholar
Yang XY, Huang C, Guo HJ, Xiong L, Li YY, Zhang HR, Chen XD (2013) Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J Appl Microbiol 115(4):995–1002. https://doi.org/10.1111/jam.12255
CAS
Article
PubMed
Google Scholar
Yurkevich DI, Kutyshenko VP (2002) Medusomyces (Tea Fungus): a scientific history, composition, features of physiology and metabolism. Biophysics 47:1116–1129
CAS
Google Scholar