Skip to main content
Log in

Mussel-inspired cellulose-based adhesive with underwater adhesion ability

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Inspired by mussels, a new cellulose-based (CTP) adhesive was fabricated by simply blending via cellulose nanofibrils (CNFs), tannic acid (TA), and polyethyleneimine (PEI), where the preparation method was green, facile, and simple. The structure and properties were examined by FT-IR, TGA, XRD, SEM, lap shear tensile, and water absorption tests. The results showed that chemical bonds, hydrogen bonds, and chain entanglement were formed among CNFs, TA, and PEI. Compared with the CNF adhesive, the dry shear strength of the CTP adhesive increased 103% to 392.2 ± 32.2 kPa. And the wet shear strength of CTP adhesive increased from 0 kPa to 144.7 ± 20.1 kPa, indicating that the CTP adhesive can be used in humid or even water environments. Meanwhile, the water absorption of CTP adhesive decreased from 37.9 ± 14.1% to 12.8 ± 5.9%. It was the introduction of catechol groups and physical–chemical interactions of three components that endow the CTP adhesive with improved dry and wet adhesion strength and water resistance. Moreover, the proposed CTP adhesive could be used on the surface of various materials, including rubber, plastic, paper, wood, metal, and glass. Overall, this work shows that the CTP adhesive has a wide range of application prospects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen Y, Zhang Y, Mensaha A et al (2021) A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/tannic acid-cellulose nanofibers. Carbohydr Polym 255:117508

    Article  CAS  PubMed  Google Scholar 

  • Chien HW, Tsai MY, Kuo CJ et al (2021) Well-dispersed silver nanoparticles on cellulose filter paper for bacterial removal. Nanomaterials 11(3):595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne KJ, Qin XX, Waite JH (1997) Extensible collagen in mussel byssus: a natural block copolymer. Science 277(5333):1830–1832

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Eisen A, Bussa M, Röder H (2020) A review of environmental assessments of biobased against petrochemical adhesives. J Clean Prod 277:124277

    Article  CAS  Google Scholar 

  • Fan H, Wang J, Gong JP (2021) Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion. Adv Funct Mater 31(11):2009334

    Article  CAS  Google Scholar 

  • Gan D, Xing W, Jiang L et al (2019) Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 10(1):1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouveia JR, Garcia GES, Antonino LD et al (2020) Epoxidation of kraft lignin as a tool for improving the mechanical properties of epoxy adhesive. Molecules 25(11):2513

    Article  CAS  PubMed Central  Google Scholar 

  • Guo J, Guo X, Wang S et al (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255

    Article  CAS  PubMed  Google Scholar 

  • Heise K, Kontturi E, Allahverdiyeva Y et al (2021) Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications. Adv Mater 33(3):e2004349

    Article  PubMed  Google Scholar 

  • Huang Q, Liu M, Zhao J et al (2018) Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl Surf Sci 427:535–544

    Article  CAS  Google Scholar 

  • Karabulut E, Pettersson T, Ankerfors M et al (2012) Adhesive layer-by-layer films of carboxymethylated cellulose nanofibril-dopamine covalent bioconjugates inspired by marine mussel threads. ACS Nano 6(6):4731–4739

    Article  CAS  PubMed  Google Scholar 

  • Karagiannidis E, Markessini C, Athanassiadou E (2020) Micro-fibrillated cellulose in adhesive systems for the production of wood-based panels. Molecules 25(20):4846

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar R, Rai B, Gahlyan S et al (2021) A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications. Express Polym Lett 15(2):104–120

    Article  CAS  Google Scholar 

  • Lee D, Hwang H, Kim JS et al (2020) VATA: a poly(vinyl alcohol)- and tannic acid-based nontoxic underwater adhesive. ACS Appl Mater Interfaces 12(18):20933–20941

    Article  CAS  PubMed  Google Scholar 

  • Lei YF, Wang XL, Liu BW et al (2020) Fully bio-based pressure-sensitive adhesives with high adhesivity derived from epoxidized soybean oil and rosin acid. ACS Sustain Chem Eng 8(35):13261–13270

    Article  CAS  Google Scholar 

  • Li Q, Liao Z, Fang X et al (2019) Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Membr Sci 584:324–332

    Article  CAS  Google Scholar 

  • Lim MY, Choi YS, Kim J et al (2017) Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J Membr Sci 521:1–9

    Article  CAS  Google Scholar 

  • Lin F, Wang Z, Shen Y et al (2019) Natural skin-inspired versatile cellulose biomimetic hydrogels. J Mater Chem A 7(46):26442–26455

    Article  CAS  Google Scholar 

  • Ling Z, Wang T, Makarem M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328

    Article  CAS  Google Scholar 

  • Liu C, Xiao C (2004) Characterization of konjac glucomannan–quaternized poly(4-vinyl-N-butyl) pyridine blend films and their preservation effect. J Appl Polym Sci 93(4):1868–1875

    Article  CAS  Google Scholar 

  • Liu G, Jiang Z, Chen C et al (2017) Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. J Membr Sci 537:229–238

    Article  CAS  Google Scholar 

  • Liu X, Zhang Q, Duan L et al (2019) Bioinspired nucleobase-driven nonswellable adhesive and tough gel with excellent underwater adhesion. ACS Appl Mater Interfaces 11(6):6644–6651

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Zhang X, Tang Z et al (2021) Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chem Eng J 417:129329

    Article  CAS  Google Scholar 

  • Madison SA, Carnali JO (2013) pH optimization of amidation via carbodiimides. Ind Eng Chem Res 52(38):13547–13555

    Article  CAS  Google Scholar 

  • McDevitt JE, Grigsby WJ (2014) Life cycle assessment of bio- and petro-chemical adhesives used in fiberboard production. J Polym Environ 22(4):537–544

    Article  CAS  Google Scholar 

  • Moulay S (2014) Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym Rev (Phila Pa) 54(3):436–513

    Article  CAS  Google Scholar 

  • Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 6(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Menefee JR, Liu Q et al (2020) Lower critical solution temperature-driven self-coacervation of nonionic polyester underwater adhesives. ACS Nano 14(7):8359–8367

    Article  CAS  PubMed  Google Scholar 

  • Rashid K, Mohammadi K, Powell K (2020) Dynamic simulation and techno-economic analysis of a concentrated solar power (CSP) plant hybridized with both thermal energy storage and natural gas. J Clean Prod 248(Mar.1):119193.119191-119193.119118

    Google Scholar 

  • Rivero S, García MA, Pinotti A (2010) Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydr Polym 82(2):270–276

    Article  CAS  Google Scholar 

  • Rivero S, García MA, Pinotti A (2012) Heat treatment to modify the structural and physical properties of chitosan-based films. J Agric Food Chem 60(1):492–499

    Article  CAS  PubMed  Google Scholar 

  • Rubentheren V, Ward TA, Chee CY et al (2016) Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr Polym 140:202–208

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Wang M, Meng L et al (2018) Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mater 30(9):3110–3121

    Article  CAS  Google Scholar 

  • Shao C, Meng L, Wang M et al (2019) Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels. ACS Appl Mater Interfaces 11(6):5885–5895

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Kim K, Shim W et al (2016) Tannic acid as a degradable mucoadhesive compound. ACS Biomater Sci Eng 2(4):687–696

    Article  CAS  PubMed  Google Scholar 

  • Staros JV, Wright RW, Swingle DM (1986) Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156(1):220–222

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Zhao M, Wang Y et al (2020) Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. Int J Biol Macromol 144:127–134

    Article  CAS  PubMed  Google Scholar 

  • Tang ZW, Bian S, Lin ZW et al (2021) Biocompatible catechol-functionalized cellulose-based adhesives with strong water resistance. Macromol Mater Eng 306(9):2100232

    Article  CAS  Google Scholar 

  • Venkatarajan S, Athijayamani A (2021) An overview on natural cellulose fiber reinforced polymer composites. Mater Today 37:3620–3624

    CAS  Google Scholar 

  • Wang J, Li A, Xu L et al (2009) Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal. J Hazard Mater 169(1):794–800

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Xiong Y, Fan B et al (2016) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci Rep 6:32383

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Chen D, Zhao X et al (2021) Underwater adhesive HPMC/SiW-PDMAEMA/Fe3+ hydrogel with self-healing, conductive, and reversible adhesive properties. ACS Appl Polym Mater 3(2):837–846

    Article  CAS  Google Scholar 

  • Wu Q, Shao W, Xia N et al (2020) A separable paper adhesive based on the starch-lignin composite. Carbohydr Polym 229:115488

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ji Y, Ma J (2021) Hydrophobic and hydrophilic effects in a mussel-inspired citrate-based adhesive. Langmuir 37(1):311–321

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Huang S, Tang H et al (2017) Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites. ACS Appl Mater Interfaces 9(23):20169–20178

    Article  CAS  PubMed  Google Scholar 

  • You Z, Dong Y, Li X et al (2021) One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity. Carbohydr Polym 251:117019

    Article  CAS  PubMed  Google Scholar 

  • Yue L, Shi R, Yi Z et al (2020) A high-performance soybean meal-based plywood adhesive prepared via an ultrasonic process and using significantly lower amounts of chemical additives. J Cleaner Prod 274:123017

    Article  CAS  Google Scholar 

  • Zhang J, Choi YS, Yoo CG et al (2015) Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3(2):293–301

    Article  Google Scholar 

  • Zhang W, Wang R, Sun Z et al (2020) Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem Soc Rev 49(2):433–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540(7633):354–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.B. acknowledges financial support by the MOE & SAFEA for 111 Project (Project No. B13025). We thank the Central Laboratory of School of Chemical and Material Engineering, Jiangnan University.

Funding

The MOE & SAFEA for 111 Project (Project No. B13025).

Author information

Authors and Affiliations

Authors

Contributions

HB: Conceptualization, Methodology, Writing—original draft, Supervision. CY: Data curation, Investigation. HZ: Measurement. SZ: Conceptualization. PM: Conceptualization. WD: Conceptualization.

Corresponding author

Correspondence to Huiyu Bai.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3378 kb)

Supplementary file2 (DOCX 1182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Yu, C., Zhu, H. et al. Mussel-inspired cellulose-based adhesive with underwater adhesion ability. Cellulose 29, 893–906 (2022). https://doi.org/10.1007/s10570-021-04337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04337-0

Keywords

Navigation