Skip to main content
Log in

Cellulose nanocrystals from native and mercerized cotton

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocelluloses occur under various crystalline forms that are currently being selectively used for a wide variety of high performance materials. In the present study, two cellulose nanofibers (CF-I) were mercerized by alkaline treatment (CF-II) without degradation, the same molar mass of 560,000 g/mol was measured. Both samples were acid hydrolyzed, leading to cellulose nanocrystals in native (CNC-I) and mercerized (CNC-II) forms. This study focuses on the detailed characterization of these two nanoparticle morphologies (light and neutron scattering, TEM, AFM), surface chemistry (zetametry and surface charge), crystallinity (XRD, 13C NMR), and average molar mass coupled to chromatographic techniques (SEC–MALLS-RI, A4F-MALLS-RI), revealing variations in the packing of the crystalline domains. The crystal size of CNC-II is reduced by half compared to CNC-I, with molar masses of individual chains of 41,000 g/mol and 22,000 g/mol for CNC-I and CNC-II, respectively, whereas the same surface charge density is measured. This study gives an example of complementary characterization techniques as well as results to help decipher the mechanism involved in mercerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Bregado JL et al (2019) Amorphous paracrystalline structures from native crystalline cellulose: a molecular dynamics protocol. Fluid Phase Equilib 491:56–76

    Article  CAS  Google Scholar 

  • Cherhal F, Cathala B, Capron I (2015a) Surface charge density variation to promote structural orientation of cellulose nanocrystals. Nord Pulp Pap Res J 30(1):126–131

    Article  CAS  Google Scholar 

  • Cherhal F, Cousin F, Capron I (2015b) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20):5596–5602

    Article  CAS  PubMed  Google Scholar 

  • Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440

    Article  Google Scholar 

  • Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17(7):3941–3947

    Article  CAS  Google Scholar 

  • Dupont A-L, Harrison G (2004) Conformation and Dn/Dc determination of cellulose in N,N-dimethylacetamide containing lithium chloride. Carbohyd Polym 58(3):233–243

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S et al (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65

    Article  Google Scholar 

  • Fink H-P, Philipp B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I→ II transition. J Appl Polym Sci 30(9):3779–3790

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolym Original Res Biomol 13(10):1975–2001

    CAS  Google Scholar 

  • Goussé C et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hasani M et al (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohyd Polym 98(2):1565–1572

    Article  CAS  Google Scholar 

  • Heise K et al (2021) Chemical modification of reducing end-groups in cellulose nanocrystals. Angew Chem Int Ed 60(1):66–87

    Article  CAS  Google Scholar 

  • Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution carbon-13 solid-state NMR. Polymer 48(5):1287–1296

    Article  CAS  Google Scholar 

  • Isogai A et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172

    Article  CAS  Google Scholar 

  • Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7(1):274–280

    Article  CAS  Google Scholar 

  • Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. determination of the structure of mercerized cotton. Polymer 19(2):123–131

    Article  CAS  Google Scholar 

  • Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. could mercerized cellulose ii be parallel? Macromolecules 29(17):5695–5699

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 \AA resolution. Biomacromol 2(2):410–416

    Article  CAS  Google Scholar 

  • Larsson PT et al (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2018) Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water pickering emulsions. Carbohyd Polym 183:303–310

    Article  CAS  Google Scholar 

  • Mansikkamaki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose rystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12(3):233–242

    Article  Google Scholar 

  • Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Neto WP, Flauzino, et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027

    Article  Google Scholar 

  • Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11(1):23–32

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46(6):452–457

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332

    Article  CAS  Google Scholar 

  • Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10

    Article  Google Scholar 

  • Paschall EF, Foster JF (1952) Further studies by light scattering of amylose aggregates. particle weights under various conditions. J Polym Sci 9(1):85–92

    Article  CAS  Google Scholar 

  • Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725

    Article  CAS  Google Scholar 

  • Revol J-F et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  PubMed  Google Scholar 

  • Sèbe G et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol 13(2):570–578

    Article  Google Scholar 

  • Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9(5):851–857

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Tao H et al (2020) Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons 5(4):607–627

    Article  CAS  PubMed  Google Scholar 

  • Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose, part IV: action of caustic soda on the fine structure of cotton and ramie. J Polym Sci Part A Polym Chem 5(10):2579–2593

    Article  CAS  Google Scholar 

  • Wickholm K et al (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8(2):139–148

    Article  CAS  Google Scholar 

  • Yanagisawa M, Isogai A (2005) SEC- MALS- QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromol 6(3):1258–1265

    Article  CAS  Google Scholar 

  • Yue Y et al (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187

    Article  CAS  Google Scholar 

  • Zuckerstätter G, Nicoleta T, Herbert S, Schuster KC (2013) Novel insight into cellulose supramolecular structure through 13C CP-MAS NMR spectroscopy and paramagnetic relaxation enhancement. Carbohydr Polym 93(1):122–128

    Article  PubMed  Google Scholar 

  • Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nadege Beury for AFM images and Emilie Perrin for TEM images with instruments from the BIBS platform (INRAE, Nantes, France), and to Laboratoire Léon Brillouin for providing neutron radiation facilities (CEA-Saclay, Gif sur Yvette, France). They are also grateful to Benoit Duchemin and Yoshiharu Nishiyama for their very stimulating discussions.

Funding

This project received funding from the French National Research Agency (ANR) (CELLOPLASM project, No. ANR-16-CE07-0003-03), including the PhD grant of SH. The authors are also grateful to INRAE for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Capron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouache, S., Jimenez-Saelices, C., Cousin, F. et al. Cellulose nanocrystals from native and mercerized cotton. Cellulose 29, 1567–1581 (2022). https://doi.org/10.1007/s10570-021-04313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04313-8

Keywords

Navigation