Skip to main content

The effect of drying method on the porosity of regenerated cellulose fibres

Abstract

This study investigates the role of drying method and dissolving solvent has on the properties of regenerated cellulose fibres, leading to the preparation of porous cellulose fibres. The fibres are produced by wet spinning using 1-butyl-3-methylimidazolium acetate (BmimAc) as the solvent, and then dried using freeze drying or supercritical drying resulting in highly porous fibres. The properties of these fibres are compared to the traditional air-dried regenerated cellulose fibre. It was found that freeze drying produced fibres with micron pores on the surface and nanopores within the core, whereas supercritical-dried fibres had a smooth surface and a nanoporous core. The addition of DMSO to the spinning dope for supercritical dried fibres reduced the fibre diameter under identical draw conditions and increased the surface area to 260 m2/g.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Buchtová N, Budtova T (2016) Cellulose aero-, cryo-and xerogels: towards understanding of morphology control. Cellulose 4:2585–2595. https://doi.org/10.1007/s10570-016-0960-8

    CAS  Article  Google Scholar 

  2. Budtova T (2019) Cellulose II aerogels: a review. Cellulose 1:81–121. https://doi.org/10.1007/s10570-018-2189-1

    CAS  Article  Google Scholar 

  3. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. Chemsuschem 1–2:149–154. https://doi.org/10.1002/cssc.200700039

    CAS  Article  Google Scholar 

  4. Clough MT, Geyer K, Hunt PA et al (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 1:231–243. https://doi.org/10.1039/c4gc01955e

    Article  Google Scholar 

  5. Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 51:7322–7324. https://doi.org/10.1016/j.tetlet.2008.10.052

    CAS  Article  Google Scholar 

  6. García-González C, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohyd Polym 4:1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066

    CAS  Article  Google Scholar 

  7. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromol 1:269–277. https://doi.org/10.1021/bm700972k

    CAS  Article  Google Scholar 

  8. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 7:4812–4836. https://doi.org/10.1021/cr300242j

    CAS  Article  Google Scholar 

  9. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Re 7:3798–3817. https://doi.org/10.1021/ie101928r

    CAS  Article  Google Scholar 

  10. Hummel M, Michud A, Tanttu M et al (2015) Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges Cellulose Chemistry and Properties: Fibers. Springer, Berlin Heidelberg, Nanocelluloses and Advanced Materials, pp 133–168

    Google Scholar 

  11. Illera D, Mesa J, Gomez H, Maury H (2018) Cellulose aerogels for thermal insulation in buildings: trends and challenges. Coatings 10:345. https://doi.org/10.3390/coatings8100345

    CAS  Article  Google Scholar 

  12. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Sy. https://doi.org/10.1002/masy.200651212

    Article  Google Scholar 

  13. Karadagli I, Schulz B, Schestakow M et al (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluid. https://doi.org/10.1016/j.supflu.2015.06.011

    Article  Google Scholar 

  14. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Edit 22:3358–3393. https://doi.org/10.1002/anie.200460587

    CAS  Article  Google Scholar 

  15. Lavoine N, Bergstrm L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A. https://doi.org/10.1039/C7TA02807E

    Article  Google Scholar 

  16. Le KA, Rudaz C, Budtova T (2014) Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2014.01.085

    Article  Google Scholar 

  17. Legras A, Kondor A, Heitzmann MT, Truss RW (2015) Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer-Emmett-Teller specific surface area. J Chromatogr A. https://doi.org/10.1016/j.chroma.2015.11.033

    Article  PubMed  Google Scholar 

  18. Liebert TF, Heinze TJ, Edgar KJ (2010) Cellulose solvents: for analysis, shaping and chemical modification. J Am Chem Soc 50:17976–17976

    Google Scholar 

  19. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 2:129–135. https://doi.org/10.1515/HF/2008.051

    Article  Google Scholar 

  20. Lv Y, Wu J, Zhang J et al (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 12:2524–2531. https://doi.org/10.1016/j.polymer.2012.03.037

    CAS  Article  Google Scholar 

  21. Ma Y, Zeng B, Wang X, Byrne N (2019) Circular textiles: closed loop fibre to fibre wet spun process for recycling cotton from denim. ACS Sustain Chem Eng 7:11937–11943. https://doi.org/10.1021/acssuschemeng.8b06166

    CAS  Article  Google Scholar 

  22. Minnick DL, Flores RA, DeStefano MR, Scurto AM (2016) Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B 32:7906–7919. https://doi.org/10.1021/acs.jpcb.6b04309

    CAS  Article  Google Scholar 

  23. O’Connell D, Birkinshaw C, O’Dwyer T (2008) Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technol 15:6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    CAS  Article  Google Scholar 

  24. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 3:173–207. https://doi.org/10.1023/A:1018431705579

    Article  Google Scholar 

  25. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 1:1

    Article  Google Scholar 

  26. Pircher N, Carbajal L, Schimper C et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 3:1949–1966. https://doi.org/10.1007/s10570-016-0896-z

    CAS  Article  Google Scholar 

  27. Rudaz C, Courson R, Bonnet L et al (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 6:2188–2195. https://doi.org/10.1021/bm500345u

    CAS  Article  Google Scholar 

  28. Schulz B, Meinert T, Bierbüsse D, Busen M, Seide G (2016) Cellulose aerogel fibers tested on a REXUS 18 rocket - the ACTOR project. Chem-Ing-Tech 10:1501–1507. https://doi.org/10.1002/cite.201600003

    CAS  Article  Google Scholar 

  29. Segal L, Creely J, Martin AJ, Conrado C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 29(10):786–794

    CAS  Article  Google Scholar 

  30. Sescousse R, Tatiana B (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose. https://doi.org/10.1007/s10570-009-9287-z

    Article  Google Scholar 

  31. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohyd Polym 4:1766–1774. https://doi.org/10.1016/j.carbpol.2010.10.043

    CAS  Article  Google Scholar 

  32. Sing K (2001) The use of nitrogen adsorption for the characterisation of porous materials. Colloid Surface A. https://doi.org/10.1016/S0927-7757(01)00612-4

    Article  Google Scholar 

  33. Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J. https://doi.org/10.3183/npprj-2015-30-01-p043-057

    Article  Google Scholar 

  34. Sun L, Chen JY, Jiang W, Lynch V (2015) Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2014.11.008

    Article  Google Scholar 

  35. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 18:4974–4975. https://doi.org/10.1021/ja025790m

    CAS  Article  Google Scholar 

  36. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 9–10:1051–1069. https://doi.org/10.1515/pac-2014-1117

    CAS  Article  Google Scholar 

  37. Zeng B, Wang X, Byrne N (2019) Development of cellulose based aerogel utilizing waste denim-A Morphology study. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2018.09.070

    Article  Google Scholar 

  38. Zeng B, Wang X, Byrne N (2020) Cellulose beads derived from waste textiles for drug delivery. Polymers-Basel 7:1621. https://doi.org/10.3390/polym12071621

    CAS  Article  Google Scholar 

  39. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Pol Phys 14:1521–1529. https://doi.org/10.1002/polb.10215

    CAS  Article  Google Scholar 

  40. Zhang S, Chen C, Duan C et al (2018) Regenerated cellulose by the lyocell process, a brief review of the process and properties. BioResources 2:4577–4592

    Article  Google Scholar 

  41. Zhao Y, Liu X, Wang J, Zhang S (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 30:9042–9049. https://doi.org/10.1021/jp4038039

    CAS  Article  Google Scholar 

  42. Zhou J, Hsieh YL (2019) Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104305

    Article  PubMed  Google Scholar 

  43. Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 4:325–327. https://doi.org/10.1039/B601395C

    Article  Google Scholar 

Download references

Funding

The authors thank Deakin University for funding this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beini Zeng.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

There is no animal or human participant in the study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 333 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, B., Byrne, N. The effect of drying method on the porosity of regenerated cellulose fibres. Cellulose 28, 8333–8342 (2021). https://doi.org/10.1007/s10570-021-04068-2

Download citation

Keywords

  • Porous cellulose fibres
  • Ionic liquid
  • Cellulose aerogel
  • Binary solvent system