Abushammala H, Mao J (2019) A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules 24:2782. https://doi.org/10.3390/molecules24152782
Article
Google Scholar
Anžlovar A, Huskić M, Žagar E (2016) Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites. Cellulose 23:505–518. https://doi.org/10.1007/s10570-015-0786-9
CAS
Article
Google Scholar
Anžlovar A, Kunaver M, Krajnc A, Žagar E (2018) Nanocomposites of LLDPE and surface-modified cellulose nanocrystals prepared by melt processing. Molecules 23:1782. https://doi.org/10.3390/molecules23071782
CAS
Article
Google Scholar
Anžlovar A, Primožič M, Švab I, Leitgeb M, Knez Ž, Žagar E (2019) Polyolefin/ZnO composites prepared by melt processing. Molecules 24:2432. https://doi.org/10.3390/molecules24132432
CAS
Article
PubMed Central
Google Scholar
Anžlovar A, Krajnc A, Žagar E (2020) Silane modified cellulose nanocrystals and nanocomposites with LLDPE prepared by melt processing. Cellulose 27:5785–5800. https://doi.org/10.1007/s10570-020-03181-y
CAS
Article
Google Scholar
Azizi-Samir AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. https://doi.org/10.1021/bm0493685
CAS
Article
Google Scholar
Borsoi C, Menin C, Lavoratti A, Zattera AJ (2019) Grape stalk fibers as reinforcing filler for polymer composites witha polystyrene matrix. J Appl Polym Sci 136:47427. https://doi.org/10.1002/app.47427
CAS
Article
Google Scholar
Bouchard J, Methot M, Fraschini C, Beck S (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567. https://doi.org/10.1007/s10570-016-1036-5
CAS
Article
Google Scholar
Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215. https://doi.org/10.1016/j.carbpol.2010.11.022
CAS
Article
Google Scholar
Carvalho AJF, Trovatti E, Casale CA (2018) Polystyrene/cellulose nanofibril composites: fiber dispersion driven by nanoemulsion flocculation. J Mol Liq 272:387–394. https://doi.org/10.1016/j.molliq.2018.09.089
CAS
Article
Google Scholar
Chen W, Zhang M, Feng Y, Wu J, Gao X, Zhang J, He J, Zhang J (2015) Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition. Polym Int 64:1037–1044. https://doi.org/10.1002/pi.4884
CAS
Article
Google Scholar
Chen T, Li M, Liu J (2018) π−π Stacking interaction: a nondestructive and facile means in material engineering for bioapplications. Cryst Growth Des 18:2765–2783. https://doi.org/10.1021/acs.cgd.7b01503
CAS
Article
Google Scholar
Daicho K, Saito T, Fujisawa S, Isogai A (2018) The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl Nano Mater 1:5774–5785. https://doi.org/10.1021/acsanm.8b01438
CAS
Article
Google Scholar
Detken A, Hardy EH, Ernst M, Meier BH (2002) Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme. Chem Phys Lett 356:298–304. https://doi.org/10.1016/S0009-2614(02)00335-4
CAS
Article
Google Scholar
Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 6:220–227. https://doi.org/10.1016/j.mattod.2013.06.004
CAS
Article
Google Scholar
Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739. https://doi.org/10.1002/pen.11821
CAS
Article
Google Scholar
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
CAS
Article
Google Scholar
French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3
CAS
Article
Google Scholar
French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448. https://doi.org/10.1007/s10570-020-03172-z
Article
Google Scholar
Grover JR, Walters EA, Hui ETJ (1987) Dissociation-energies of the benzene dimer and dimer cation. J Phys Chem 91:3233–3237. https://doi.org/10.1021/j100296a026
CAS
Article
Google Scholar
Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. https://doi.org/10.1007/s10570-006-9075-y
CAS
Article
Google Scholar
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w
CAS
Article
PubMed
Google Scholar
Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 458:1519–1542. https://doi.org/10.1039/c3cs60204d
CAS
Article
Google Scholar
Huan S, Bai L, Liu G, Cheng W, Han G (2015) Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization. RSC Adv 5:50756–50766. https://doi.org/10.1039/c5ra06117b
CAS
Article
Google Scholar
Huang JL, Li CJ, Gray DG (2014) Functionalization of cellulose nanocrystal films via “thiol-ene” click reaction. RSC Adv 4:6965–6969. https://doi.org/10.1039/c3ra47041e
CAS
Article
Google Scholar
Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE, Rathouský J, Bein T (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937. https://doi.org/10.1021/ja411292u
CAS
Article
PubMed
Google Scholar
Kalantari M, Du R, Ayranci C, Boluk Y (2018) Effects of interfacial interactions and interpenetrating brushes on the electrospinning of cellulose nanocrystals-polystyrene fibers. J Colloid Interface Sci 528:419–430. https://doi.org/10.1016/j.jcis.2018.04.089
CAS
Article
PubMed
Google Scholar
Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061. https://doi.org/10.1002/pen.21417
CAS
Article
Google Scholar
Klemm D, Kramer F, Moritz S, Lindstroem T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273
CAS
Article
Google Scholar
Krajnc A, Kos T, Zabukovec Logar N, Mali G (2015) A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal-organic frameworks. Angew Chem Int Ed 54:10535–10538. https://doi.org/10.1002/anie.201504426
CAS
Article
Google Scholar
Krajnc A, Bueken B, De Vos D, Mali G (2017) Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs. J Magn Reson 279:22–28. https://doi.org/10.1016/j.jmr.2017.04.008
CAS
Article
PubMed
Google Scholar
Kunaver M, Anžlovar A, Žagar E (2016) The fast and effective isolation of nanocellulose from selected cellulosic feedstocks. Carbohydr Polym 148:251–258. https://doi.org/10.1016/j.carbpol.2016.04.076
CAS
Article
PubMed
Google Scholar
Ladizhansky V, Vega S (2000) Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J Chem Phys 112:7158. https://doi.org/10.1063/1.481281
CAS
Article
Google Scholar
Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583. https://doi.org/10.1021/ma4010154
CAS
Article
Google Scholar
Ly EB, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120:438–445. https://doi.org/10.1016/j.matchemphys.2009.11.032
CAS
Article
Google Scholar
Metz G, Wu XL, Smith SO (1994) Ramped-amplitude cross polarization in magic-angle-spinning NMR. J Magn Reson 110:219–227. https://doi.org/10.1006/jmra.1994.1208
CAS
Article
Google Scholar
Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. https://doi.org/10.1021/la900452a
CAS
Article
PubMed
Google Scholar
Morelli CL, Belgacem MN, Branciforti MC, Bretas RE, Crisci A, Bras J (2016a) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos Part A Appl Sci Manuf 83:80–88. https://doi.org/10.1016/j.compositesa.2015.10.038
CAS
Article
Google Scholar
Morelli CL, Belgacem N, Bretas RE, Bras J (2016b) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133:43678. https://doi.org/10.1002/app.43678
CAS
Article
Google Scholar
Nagalakshmaiah M, Nechyporchuk O, El Kissia N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexylacrylate)] latex particles. Eur Polym J 91:297–306. https://doi.org/10.1016/j.eurpolymj.2017.04.020
CAS
Article
Google Scholar
Neves RM, Lopes KS, Zimmermann MVG, Poletto M, Zattera AJ (2019) Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose 26:4417–4429. https://doi.org/10.1007/s10570-019-02392-2
CAS
Article
Google Scholar
Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. https://doi.org/10.1021/ja0257319
CAS
Article
PubMed
Google Scholar
Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural Biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502. https://doi.org/10.1021/la904439p
CAS
Article
PubMed
Google Scholar
Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58:792–801. https://doi.org/10.1016/j.actamat.2009.09.057
CAS
Article
Google Scholar
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Research Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10
CAS
Article
PubMed
PubMed Central
Google Scholar
van Rossum BJ, de Groot CP, Ladizhansky V, Vega S, de Groot HJM (2000) A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J Am Chem Soc 122:3465–3472. https://doi.org/10.1021/ja992714j
CAS
Article
Google Scholar
Sakakura A, Kawajiri K, Ohkubo T, Kosugi Y, Ishihara K (2007) Widely useful DMAP-catalyzed esterification under auxiliary base- and solvent-free conditions. J Am Chem Soc 129:14775–14779. https://doi.org/10.1021/ja075824w
CAS
Article
PubMed
Google Scholar
Sapkota J, Kumar S, Weder CE, Foster J (2015) Influence of processing conditions on properties of poly (vinyl acetate)/cellulose nanocrystal nanocomposites. Macromol Mater Eng 300:562–571. https://doi.org/10.1002/mame.201400313
CAS
Article
Google Scholar
Sapkota J, Garcia JCM, Lattuada M (2017a) Reinterpretation of the mechanical reinforcement of polymer nanocomposites reinforced with cellulose nanorods. J Appl Polym Sci 134:45254. https://doi.org/10.1002/app.45254
CAS
Article
Google Scholar
Sapkota J, Gooneie A, Shirole A, Garcia JCM (2017b) A refined model for the mechanical properties of polymer composites with nanorods having different length distributions. J Appl Polym Sci 134:45279. https://doi.org/10.1002/app.45279
CAS
Article
Google Scholar
Schilling T, Miller MA, van der Schoot P (2015) Percolation in suspensions of hard nanoparticles: from spheres to needles. Europhys Lett 111:56004. https://doi.org/10.1209/0295-5075/111/56004
CAS
Article
Google Scholar
Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the Ab initio limit for π-π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893. https://doi.org/10.1021/ja025896h
CAS
Article
PubMed
Google Scholar
Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of π-π interactions in benzene dimers. J Phys Chem A 110:10656–10668. https://doi.org/10.1021/jp0610416
CAS
Article
PubMed
Google Scholar
Tingaut P, Zimmermann T, Sebe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111. https://doi.org/10.1039/c2jm32956e
CAS
Article
Google Scholar
Ugarte L, Santamaria-Echart A, Mastel S, Autore M, Hillenbrand R, Corcuera MA, Eceiza A (2017) An alternative approach for the incorporation of cellulose nanocrystals in flexible polyurethane foams based on renewably sourced polyols. Ind Crops Prod 95:564–573. https://doi.org/10.1016/j.indcrop.2016.11.011
CAS
Article
Google Scholar
Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. https://doi.org/10.1021/am302624t
CAS
Article
PubMed
Google Scholar
Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579. https://doi.org/10.1007/s10570-020-03177-8
CAS
Article
Google Scholar
Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3,5-dimethylphenylcarbamate derivative coated chiral stationary phase: preparation and enantioseparation performance. Chirality 28:376–381. https://doi.org/10.1002/chir.22578
CAS
Article
PubMed
Google Scholar
Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432. https://doi.org/10.1021/ma901175j
CAS
Article
Google Scholar
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225
CAS
Article
PubMed
Google Scholar