Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide

Abstract

Uniformly-sized porous cellulose beads functionalized with amidoxime groups were prepared for the first time using a microfluidic method with N-methylmorpholine N-oxide (NMMO) monohydrate as a cellulose solvent. The molten state cellulose dope in NMMO monohydrate (cell/NMMO dope) as a disperse phase and hot mineral oil as a continuous phase were used in a T-junction microfluidic chip to produce uniformly-sized cell/NMMO droplets. Coagulation of the molten state cell/NMMO droplet at high temperature and amidoxime functionalization could prepare the highly-porous spherical amidoxime-functionalized cellulose beads with a uniform fibrous open internal structure. The prepared amidoxime-functionalized cellulose beads showed excellent metal adsorption properties with a maximum adsorption capacity of ~ 80 mg g−1 in the case of Cu2+/phthalate ions. The newly developed highly-porous cellulose beads can open many new applications with other proper functionalization at the reactive hydroxyl groups of the cellulose.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alam MN, Islam MS, Christopher LP (2019) Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline. ACS Omega 4:9419–9426. https://doi.org/10.1021/acsomega.9b00651

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Biganska O, Navard P (2008) Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide–water solutions. Cellulose 16:179. https://doi.org/10.1007/s10570-008-9256-y

    CAS  Article  Google Scholar 

  3. Biganska O, Navard P, Bédué O (2002) Crystallisation of cellulose/N-methylmorpholine-N-oxide hydrate solutions. Polymer 43:6139–6145

    CAS  Article  Google Scholar 

  4. Boeden HF et al (1991) Bead cellulose derivatives as supports for immobilization and chromatographic purification of proteins. J Chromatogr A 552:389–414

    CAS  Article  Google Scholar 

  5. Bolto BA, Pawlowski L (1987) Wastewater treatment by ion-exchange

  6. Dawson T (2012) Progress towards a greener textile industry. Color Technol 128:1–8

    CAS  Article  Google Scholar 

  7. Diviš P, Szkandera R, BrulíK L, Docekalova H, Matúš P, BujdoŠ M (2009) Application of new resin gels for measuring mercury by diffusive gradients in a thin-films technique. Anal Sci 25:575–578

    Article  Google Scholar 

  8. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    CAS  Article  Google Scholar 

  9. Geckeler KE, Shkinev VM, Spivakov BY (1988) Liquid-phase polymer-based retention (LPR)-a new method for selective ion separation. Sep Purif Methods 17:105–140

    CAS  Article  Google Scholar 

  10. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    CAS  Article  Google Scholar 

  11. Gough BM (1967) Interaction of wheat starch and epichlorohydrin. Starch-Stärke 19:240–243

    CAS  Article  Google Scholar 

  12. He YB, Meng LZ, Wu CT, Qian T (1999) Preparation and coordination behavior of cellulose beads derivative modified by 1, 5-diaminoethyl-3-hydroxy-1, 5-diazacycloheptane. J Appl Polym Sci 74:1278–1285

    CAS  Article  Google Scholar 

  13. Hirota M, Tamura N, Saito T, Isogai A (2009) Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO 2 system. Cellulose 16:841–851

    CAS  Article  Google Scholar 

  14. Hua J et al (2019) Highly porous cellulose microbeads and their adsorption for methylene blue. Fibers Polym 20:794–803

    CAS  Article  Google Scholar 

  15. Kahovec J, Matějka Z, Štamberg J (1980) EDTA ester of bead cellulose a fast-kinetics chelating sorbent. Polym Bull 3:13–17

    CAS  Article  Google Scholar 

  16. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Article  Google Scholar 

  17. Li W, Liu R, Kang H, Sun Y, Dong F, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563. https://doi.org/10.1039/C3PY00052D

    CAS  Article  Google Scholar 

  18. Lidhure A, Jadhav S, Ganvir V, Thakre S (2019) Modified lyocell process for producing biopolymer fiber. In: AIP conference proceedings, vol 1. AIP Publishing LLC, p 030062

  19. Matúš P, Kubová J (2005) Complexation of labile aluminium species by chelating resins Iontosorb—a new method for Al environmental risk assessment. J Inorg Biochem 99:1769–1778

    Article  Google Scholar 

  20. Pawlowski L (2015) Physicochemical methods for water and wastewater treatment: proceedings of the second international conference, Lublin, June 1979. Elsevier

  21. Pinnow M, Fink HP, Fanter C, Kunze J (2008) Characterization of highly porous materials from cellulose carbamate. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 129–139

  22. Rahman ML, Sarkar SM, Farid EM, Arshad SE, Sarjadi MS, Wid N (2018) Synthesis of tapioca cellulose-based poly (amidoxime) ligand for removal of heavy metal ions. J Macromol Sci Part B 57:83–99

    CAS  Article  Google Scholar 

  23. Rahman ML, Sarkar SM, Yusoff MM, Abdullah MH (2016) Efficient removal of transition metal ions using poly (amidoxime) ligand from polymer grafted kenaf cellulose. RSC Adv 6:745–757

    CAS  Article  Google Scholar 

  24. Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)-degradation processes and stabilizers. Cellulose 9:283–291

    CAS  Article  Google Scholar 

  25. Rosenau T, Potthast A, Kosma P, Chen GJS (1999) Autocatalytic decomposition of N-methylmorpholine N-oxide induced by mannich intermediates. J Org Chem 64:2166–2167. https://doi.org/10.1021/jo982350y

    CAS  Article  Google Scholar 

  26. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837

    CAS  Article  Google Scholar 

  27. Rosenau T, Schmid P, Potthast A, Kosma P (2005) Stabilization of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell dopes) by addition of an N-oxide as sacrificial substrate. Holzforschung 59:503–506. https://doi.org/10.1515/hf.2005.083

    CAS  Article  Google Scholar 

  28. Rosenberg P, Suominen I, Rom M, Janicki J, Fardim P (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254

    Google Scholar 

  29. Saeed K, Haider S, Oh T-J, Park S-Y (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322:400–405

    CAS  Article  Google Scholar 

  30. Saliba R, Gauthier H, Gauthier R, Petit-Ramel M (2000) Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose. J Appl Polym Sci 75:1624–1631

    CAS  Article  Google Scholar 

  31. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2011) Droplet based microfluidics. Rep Progress Phys 75:016601

    Article  Google Scholar 

  32. Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    CAS  Article  Google Scholar 

  33. Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299

    CAS  Article  Google Scholar 

  34. Twu Y-K, Huang H-I, Chang S-Y, Wang S-L (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr Polym 54:425–430

    CAS  Article  Google Scholar 

  35. Udoetok IA, Dimmick RM, Wilson LD, Headley JV (2016) Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr Polym 136:329–340

    CAS  Article  Google Scholar 

  36. Wang P, Du M, Zhu H, Bao S, Yang T, Zou M (2015) Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazard Mater 286:533–544

    CAS  Article  Google Scholar 

  37. Yeomans-Reina H, Ruiz-Manriquez A, Wong BR, Mansir AT (2001) Selectivity of IMAC columns in trypsin inhibitor purification. Biotechnol Prog 17:729–733

    CAS  Article  Google Scholar 

  38. Zhang L, Cai J, Zhou J, Tang Y (2005) Adsorption of Cd2+ and Cu2+ on ion-exchange beads from cellulose/alginic acid blend. Sep Sci Technol 39:1203–1219

    Article  Google Scholar 

  39. Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75. https://doi.org/10.1039/C6LC01018K

    CAS  Article  Google Scholar 

  40. Zulfiqar S et al (2011) Amidoximes: promising candidates for CO2 capture energy and environmental. Science 4:4528–4531

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (2020R1A2B5B02001556).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3225 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baek, SY., Park, SY. Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide. Cellulose 28, 5401–5419 (2021). https://doi.org/10.1007/s10570-021-03872-0

Download citation

Keywords

  • Cellulose
  • Microfluidics
  • N-methylmorpholine N-oxide
  • Amidoxime
  • Metal adsorption
  • Filter