Skip to main content
Log in

Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, a unique multi-scale nanofiber membrane prepared by electrospinning with adding the tetrabutylammonium chloride (TBAC)  was applied to proton exchange membrane for direct methanol fuel cell. Three types of multi-scale nanofiber membranes of cellulose acetate (CA), nylon 6 (PA6) and poly-m-phenyleneisophthalamide (PMIA) were carefully selected as effective conductive fillers to be incorporated into Nafion as composite membranes (T-CA-Nafion, T-PA6-Nafion and T-PMIA-Nafion). At 80 °C, the proton conductivity of the multi-scale nanofiber composite membranes could reach 0.192 S cm−1 (T-CA-Nafion), 0.287 S cm−1 (T-PA6-Nafion) and 0.225 S cm−1 (T-PMIA-Nafion), which were higher than that of the ordinary nanofiber composite membrane. At the same time, the methanol permeability was also significantly reduced. The above superiorities could be attributed to the following aspects: Firstly, the unique multi-scale nanofiber structure could provide hierarchically consecutive long-range channels for proton conducting. Meanwhile, the hydrophilicity of TBAC additives made the membrane with high water-absorbing capacity, which could be beneficial to provide more water molecule carriers for proton conduction via the Vehicle mechanism. Moreover, the cross-linked nanofiber network can be acted as barriers to further hinder methanol penetration. Specifically, the –NH (amido bonds in the PA6 and PMIA) groups could be interconnected with –SO3H groups in Nafion matrix via electrostatic attractions, leading to the formation of effective –NH–SO3H pairs in the composite membrane. The effective acid–base pairs can facilitate the proton hopping through Grotthuss mechanism, which also well illustrated the better proton conducting behavior of the T-PA6-Nafion and T-PMIA-Nafion membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

Download references

Acknowledgments

The author would like to thank the National Natural Science Foundation of China (51873152), the Natural Science Foundation of Tianjin (No. 18JCQNJC76900), the Science and Technology Plans of Tianjin (Nos. 17PTSYJC00040, 18PTSYJC00180 and 19PTSYJC00010) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyuan Wang, Bowen Cheng or Weimin Kang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1697 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, L., Deng, N. et al. Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes. Cellulose 28, 6567–6585 (2021). https://doi.org/10.1007/s10570-021-03843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03843-5

Keywords

Navigation