Skip to main content

Advertisement

Log in

Application of novel butane-1,4-dioic acid-functionalized cellulosic biosorbent for aqueous cobalt ion sequestration

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The study involved the synthesis of a novel adsorbent via the direct carbonylation of butane-1,4-dioic acid impregnated Alhagi root powder to its acid anhydride analogue and the subsequent esterification of the highly cellulosic plant material by the anhydride to an ester of high carboxyl content. The high carboxyl content of the synthesized adsorbent was recorded as 451.76 m.eq –COOH/100 g sample. The adsorbent was effectively characterized using Scanning electron microscopy, Energy dispersion X-ray, and Fourier-transform infrared spectroscopy, as well as utilized for aqueous cobalt ion sequestration. Similarly, the effect of the process variable on the carboxyl content and adsorption capacity of ‘ATAG’ was elucidated. The Dubinin–Radushkevich model satisfactorily predicted the isotherm data. Meanwhile, the intraparticle diffusion model was best at predicting the kinetic data at adsorbate concentration of 300 and 450 mg/L, while the pseudo-first-order model emerged as the best fit at 600 mg/L concentration. The maximum adsorption capacity of 188.67 mg/g was recorded at optimum adsorption conditions (pH 6.0, 60 min, and 30 °C), and the adsorption mechanism was also proposed. The abundant surface oxygenous functional groups on ‘ATAG’ positively influenced its adsorption capacity; thus, making it a promising biosorbent for aqueous Co (II) uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas M, Kaddour S, Trari M (2014) Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Ind Eng Chem 20(3):745–751

    CAS  Google Scholar 

  • Abdolali A, Guo W, Ngo H, Chen S, Nguyen N, Tung K (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66

    CAS  PubMed  Google Scholar 

  • Abonyi M, Aniagor C, Menkiti M (2019) Effective Dephenolation of effluent from petroleum industry using ionic-liquid-induced hybrid adsorbent. Arab J Sci Eng 44(12):10017–10029

    CAS  Google Scholar 

  • Achmad A, Kassim J, Suan TK, Amat RC, Seey TL (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract. J Phys Sci 23(1):1–13

    CAS  Google Scholar 

  • Adigun O, Oninla V, Babarinde NA (2019) Application of sugarcane leaves as biomass in the removal of cadmium (II), lead (II) and zinc (II) ions from polluted water. Int J Energy Water Resour 3(2):141–152

    Google Scholar 

  • Amrhar O, Nassali H, Elyoubi MS (2015) Two and three-parameter isothermal modeling for adsorption of Crystal Violet dye onto Natural Illitic Clay: nonlinear regression analysis. J Chem Pharm Res 7(9):892–903

    CAS  Google Scholar 

  • Aniagor C, Menkiti M (2018) Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J Environ Chem Eng 6(2):2105–2118

    CAS  Google Scholar 

  • Aniagor C, Menkiti M (2019) Synthesis, modification and use of lignified bamboo isolate for the renovation of crystal violet dye effluent. Appl Water Sci 9(4):77

    Google Scholar 

  • Aniagor CO, Menkiti MC (2020) Relational description of an adsorption system based on isotherm, adsorption density, adsorption potential, hopping number and surface coverage. Sigma 38(3):1073–1098

    Google Scholar 

  • Arshadi M, Amiri M, Mousavi S (2014) Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash. Water Resour Ind 6:1–17

    Google Scholar 

  • Atia AA, Donia AM, Yousif AM (2008) Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep Purif Technol 61(3):348–357

    CAS  Google Scholar 

  • Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem. https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  • Bădescu IS, Bulgariu D, Ahmad I, Bulgariu L (2018) Valorisation possibilities of exhausted biosorbents loaded with metal ions–a review. J Environ Manag 224:288–297

    Google Scholar 

  • Behbahani TJ, Behbahani ZJ (2014) A new study on asphaltene adsorption in porous media. Pet Coal 56(5):459–466

    Google Scholar 

  • Brouers F, Al-Musawi TJ (2015) On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J Mol Liq 212:46–51

    CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    CAS  Google Scholar 

  • Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3(1):38–45

    Google Scholar 

  • Davoudinejad M, Ghorbanian S (2013) Modeling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concept of Adsorption Effective Surface (AES). Sci Res Essays 8(46):2263–2275

    Google Scholar 

  • Ebrahimi A, Ehteshami M, Dahrazma B (2015) Isotherm and kinetic studies for the biosorption of cadmium from aqueous solution by Alhaji maurorum seed. Process Saf Environ Prot 98:374–382

    CAS  Google Scholar 

  • Edet UA, Ifelebuegu AO (2020) Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6):665

    CAS  Google Scholar 

  • El-Shamy OA, El-Azabawy RE, El-Azabawy O (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater. https://doi.org/10.1155/2019/6326012

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    CAS  Google Scholar 

  • Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2018) Adsorption behavior of Cu (II) and Co (II) using chemically modified marine algae. Environ Technol 39(21):2792–2800

    CAS  PubMed  Google Scholar 

  • Foroutan R, Oujifard A, Papari F, Esmaeili H (2019) Calcined Umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co (II). 3 Biotech 9(3):78

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Wang J (2019a) Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq 296:111850

    CAS  Google Scholar 

  • Guo X, Wang J (2019b) A general kinetic model for adsorption: theoretical analysis and modeling. J Mol Liq 288:111100

    CAS  Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters. J Hazard Mater 147(1–2):401–411

    CAS  PubMed  Google Scholar 

  • Haq NB, Rubina K, Muhammad AH (2011) Biosorption of Pb (II) and Co (II) on red rose waste biomass. Iran J Chem Chem Eng (IJCCE) 30(4):81–88

    CAS  Google Scholar 

  • Hashem A, Badawy SM (2015) Sesbania sesban L. biomass as a novel adsorbent for removal of Pb (II) ions from aqueous solution: non-linear and error analysis. Green Process Synth 4(3):179–190

    CAS  Google Scholar 

  • Hashem A, Hammad HA, Al-Anwar A (2015) Chemically modified Retama raetam biomass as a new adsorbent for Pb (II) ions from aqueous solution: non-linear regression, kinetics and thermodynamics. Green Process Synth 4(6):463–478

    CAS  Google Scholar 

  • Hashem A, Al-Anwar A, Nagy NM, Hussein DM, Eisa S (2016) Isotherms and kinetic studies on adsorption of Hg (II) ions onto Ziziphus spina-christi L. from aqueous solutions. Green Process Synth 5(2):213–224

    CAS  Google Scholar 

  • Hashem A, Badawy S, Farag S, Mohamed L, Fletcher A, Taha G (2020a) Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd (II) from aqueous systems. J Environ Chem Eng 8:103966

    CAS  Google Scholar 

  • Hashem A, Fletcher A, El-Sakhawy M, Mohamed LA, Farag S (2020b) Aminated hydroximoyl camelthorn residues as a novel adsorbent for extracting Hg (II) from contaminated water: studies of isotherm, kinetics, and mechanism. J Polym Environ 28(9):2498–2510

    CAS  Google Scholar 

  • Hashem A, Fletcher A, Younis H, Mauof H, Abou-Okeil A (2020c) Adsorption of Pb (II) ions from contaminated water by 1, 2, 3, 4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. Int J Biol Macromol 164:3193–3203

    CAS  PubMed  Google Scholar 

  • Hashem A, Sanousy M, Mohamed LA, Okoye PU, Hameed B (2021) Natural and low-cost P. turgidum for efficient adsorption of Hg(II) ions from contaminated solution: isotherms and kinetics studies. J Polym Environ 29:304–312. https://doi.org/10.1007/s10924-020-01879-5

    Article  CAS  Google Scholar 

  • He M, Zhu Y, Yang Y, Han B, Zhang Y (2011) Adsorption of cobalt (II) ions from aqueous solutions by palygorskite. Appl Clay Sci 54(3–4):292–296

    CAS  Google Scholar 

  • Hermawan B, Nikmatin S, Alatas H, Sukaryo S (2017) Molecular analysis on the utilization of oil palm empty fruit bunches fiber as reinforcement for acrylonitrile butadiene styrene biocomposites. In: Paper presented at the IOP conference series: Earth and environmental science

  • Hevira L, Ighalo JO, Zein R (2020) Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell. J Environ Chem Eng 8(5):104290

    CAS  Google Scholar 

  • Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO (2020) Adsorption of ciprofloxacin from water: a comprehensive review. J Ind Eng Chem 93:57–77. https://doi.org/10.1016/j.jiec.2020.09.023

    Article  CAS  Google Scholar 

  • Jeppu GP, Clement TP (2012) A modified Langmuir–Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol 129:46–53

    PubMed  Google Scholar 

  • Jiang M, Yang W, Zhang Z, Yang Z, Wang Y (2015) Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J Environ Sci 31:226–234

    CAS  Google Scholar 

  • Joksimovic D, Tomic I, Stankovic AR, Jovic M, Stankovic S (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127(2):632–637

    CAS  PubMed  Google Scholar 

  • Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm 51(1):25–40

    CAS  Google Scholar 

  • Khalil M, Hashem A, Hebeish A (1990) Carboxymethylation of maize starch. Starch-Stärke 42(2):60–63

    CAS  Google Scholar 

  • Kılıc M, Kırbıyık C, Çepelioğullar Ö, Pütün AE (2013) Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl Surf Sci 283:856–862

    Google Scholar 

  • Kumar KV, Sivanesan S (2006) Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods. J Hazard Mater 136(3):721–726

    CAS  PubMed  Google Scholar 

  • Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  • Lakshmipathy R, Sarada N (2013) Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution. Int J Miner Process 122:63–65

    CAS  Google Scholar 

  • Liu X, Chen Z-Q, Han B, Su C-L, Han Q, Chen W-Z (2018) Biosorption of copper ions from aqueous solution using rape straw powders: optimization, equilibrium and kinetic studies. Ecotoxicol Environ Saf 150:251–259

    CAS  PubMed  Google Scholar 

  • Long X, Chen R, Yang S, Wang J, Huang T, Lei Q, Tan J (2019) Preparation, characterization and application in cobalt ion adsorption using nanoparticle films of hybrid copper–nickel hexacyanoferrate. RSC Adv 9(13):7485–7494

    CAS  Google Scholar 

  • Lucaci AR, Bulgariu D, Ahmad I, Lisă G, Mocanu AM, Bulgariu L (2019) Potential use of biochar from various waste biomass as biosorbent in Co (II) removal processes. Water 11(8):1565

    CAS  Google Scholar 

  • Menkiti M, Aniagor C (2018) Parametric studies on descriptive isotherms for the uptake of crystal violet dye from aqueous solution onto lignin-rich adsorbent. Arab J Sci Eng 43(5):2375–2392

    CAS  Google Scholar 

  • Menkiti M, Abonyi M, Aniagor C (2018a) Process equilibrium, kinetics, and mechanisms of ionic-liquid induced dephenolation of petroleum effluent. Water Conserv Sci Eng 3(3):205–220

    Google Scholar 

  • Menkiti M, Aniagor C, Agu C, Ugonabo V (2018b) Effective adsorption of crystal violet dye from an aqueous solution using lignin-rich isolate from elephant grass. Water Conserv Sci Eng 3(1):33–46

    Google Scholar 

  • Meyers RA (2017) Encyclopedia of physical science and technology polymers, 3rd edn. Academic Press, Cambridge, MA, USA. eBook ISBN: 9780080917955

  • Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147(2–3):87–96

    CAS  Google Scholar 

  • Nithya K, Sathish A, Kumar PS, Ramachandran T (2017) Functional group-assisted green synthesised superparamagnetic nanoparticles for the rapid removal of hexavalent chromium from aqueous solution. IET Nanobiotechnol 11(7):852–860

    Google Scholar 

  • Noh JS, Schwarz JA (1990) Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28(5):675–682

    CAS  Google Scholar 

  • Pal A, Ghosh S, Paul A (2006) Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour Technol 97(10):1253–1258

    CAS  PubMed  Google Scholar 

  • Qiu H, Lv L, Pan B-C, Zhang Q-J, Zhang W-M, Zhang Q-X (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724

    CAS  Google Scholar 

  • Reddy KO, Shukla M, Maheswari CU, Rajulu AV (2012) Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. J For Res 23(4):667–674

    Google Scholar 

  • Saha P, Chowdhury S (2011) Insight into adsorption thermodynamics. Thermodynamics 16:349–364

    Google Scholar 

  • Sasmal S, Goud VV, Mohanty K (2012) Characterization of biomasses available in the region of North–East India for production of biofuels. Biomass Bioenergy 45:212–220

    CAS  Google Scholar 

  • Seo PW, Khan NA, Jhung SH (2017) Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chem Eng J 315:92–100

    CAS  Google Scholar 

  • Serguchev YA, Beletskaya IP (1980) Oxidative decarboxylation of carboxylic acids. Russ Chem Rev 49(12):1119

    Google Scholar 

  • Srihari V, Ashutosh D (2009) Adsorption of phenol from aqueous media by an agro-waste (Hemidesmus indicus) based activated carbon. Appl Ecol Environ Res 7(1):13–23

    Google Scholar 

  • Suslick KS (2001) Encyclopedia of physical science and technology. Sonoluminescence and sonochemistry, 3rd edn. Elsevier Science Ltd, Cambridge, pp 1–20

    Google Scholar 

  • Thilagavathy P, Santhi T (2014) Kinetics, isotherms and equilibrium study of Co (II) adsorption from single and binary aqueous solutions by Acacia nilotica leaf carbon. Chin J Chem Eng 22(11–12):1193–1198

    CAS  Google Scholar 

  • Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88

    CAS  Google Scholar 

  • Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper (II) and cobalt (II) from aqueous solutions by crab shell particles. Bioresour Technol 97(12):1411–1419

    CAS  PubMed  Google Scholar 

  • Vilvanathan S, Shanthakumar S (2015) Biosorption of Co (II) ions from aqueous solution using Chrysanthemum indicum: kinetics, equilibrium and thermodynamics. Process Saf Environ Prot 96:98–110

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    PubMed  Google Scholar 

  • Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Biores Technol 160:129–141

    CAS  Google Scholar 

  • Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156

    CAS  PubMed  Google Scholar 

  • Wang J, Guo X (2020a) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhuang S (2017) Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit Rev Environ Sci Technol 47(23):2331–2386

    CAS  Google Scholar 

  • Wang G, Chang Q, Zhang M, Han X (2013) Effect of pH on the removal of Cr (III) and Cr (VI) from aqueous solution by modified polyethyleneimine. React Funct Polym 73(11):1439–1446

    CAS  Google Scholar 

  • Yargıç A, Şahin RY, Özbay N, Önal E (2015) Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste. J Clean Prod 88:152–159

    Google Scholar 

  • Zhao J, He M-C (2014) Theoretical study of heavy metal Cd, Cu, Hg, and Ni (II) adsorption on the kaolinite (0 0 1) surface. Appl Surf Sci 317:718–723

    CAS  Google Scholar 

  • Zhu W, Liu J, Li M (2014) Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal. Sci World J. https://doi.org/10.1155/2014/485820

    Article  Google Scholar 

  • Zhuang S, Wang J (2019) Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ Prog Sustain Energy 38(s1):S32–S41

    CAS  Google Scholar 

  • Zhuang S, Zhu K, Wang J (2020) Fibrous chitosan/cellulose composite as an efficient adsorbent for Co (II) removal. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Hashem or C. O. Aniagor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the supplementary information.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A., Aniagor, C.O., Hussein, D.M. et al. Application of novel butane-1,4-dioic acid-functionalized cellulosic biosorbent for aqueous cobalt ion sequestration. Cellulose 28, 3599–3615 (2021). https://doi.org/10.1007/s10570-021-03726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03726-9

Keywords

Navigation