Skip to main content

Effect of boric acid on the stabilisation of cellulose-lignin filaments as precursors for carbon fibres

Abstract

The increasing demand for a low-cost and renewable carbon fibre precursor has driven the focus on bio-based precursors. Cellulose-lignin composite fibres are a new approach toward this direction. The combination of cellulose and lignin into a composite fibre could solve some of the current limitations for pure cellulose and lignin fibres. This study investigated the treatment of the composite fibres with boric acid with focus on carbon yield, stabilisation rate and fibre fusion, which is a typical defect in carbon fibre production. The influence of boric acid on the mechanism of stabilisation was studied. The stabilisation time was reduced by 25% through treatment with the reduction of fibre fusion, while the carbon yield increased significantly in comparison to the untreated fibres.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bacon R, Tang MM (1964) Carbonization of cellulose fibers-II. Physical property study. Carbon 2:221–225. https://doi.org/10.1016/0008-6223(64)90036-3

    Article  Google Scholar 

  2. Baker FS (2010) Low cost carbon fiber from renewable resources. In: U.S Dep. energy. https://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2010/lightweight_materials/lm005_baker_2010_o.pdf. Accessed 13 Jul 2020

  3. Bengtsson A, Bengtsson J, Sedin M, Sjöholm E (2019) Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions. ACS Sustain Chem Eng 7:8440–8448. https://doi.org/10.1021/acssuschemeng.9b00108

    CAS  Article  Google Scholar 

  4. Bridgwater AV, Czernik S, Diebold JM, Oasmaa D (1999) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury

    Google Scholar 

  5. Byrne N, Chen J, Fox B (2014) Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J Mater Chem A 2:15758–15762. https://doi.org/10.1039/c4ta04059g

    CAS  Article  Google Scholar 

  6. Byrne N, De Silva R, Ma Y et al (2018) Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25:723–733. https://doi.org/10.1007/s10570-017-1579-0

    CAS  Article  PubMed  Google Scholar 

  7. Byrne N, Setty M, Blight S et al (2016) Cellulose-derived carbon fibers produced via a continuous carbonization process: investigating precursor choice and carbonization conditions. Macromol Chem Phys 217:2517–2524. https://doi.org/10.1002/macp.201600236

    CAS  Article  Google Scholar 

  8. Choi D, Kil HS, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon 142:610–649. https://doi.org/10.1016/j.carbon.2018.10.028

    CAS  Article  Google Scholar 

  9. Di Blasi C, Branca C, Galgano A (2007) Flame retarding of wood by impregnation with boric acid—Pyrolysis products and char oxidation rates. Polym Degrad Stab 92:752–764. https://doi.org/10.1016/j.polymdegradstab.2007.02.007

    CAS  Article  Google Scholar 

  10. Downing M (2013) DOE lignin to carbon fiber workshop. In: U.S Dep. energy. http://www1.eere.energy.gov/bioenergy/pdfs/carbon_fiber_workshop_downing.pdf. Accessed 6 Apr 2020

  11. Ford CE, Mitchell CV (1963) Fibrous graphite. US Pat. 3,107,152 1–5

  12. Frank E, Steudle LM, Ingildeev D et al (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chemie—Int Ed 53:5262–5298. https://doi.org/10.1002/anie.201306129

    CAS  Article  Google Scholar 

  13. Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36:1085–1097. https://doi.org/10.1016/S0008-6223(98)00082-7

    CAS  Article  Google Scholar 

  14. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Part C 36:721–794. https://doi.org/10.1080/15321799608014859

    Article  Google Scholar 

  15. Karacan I, Soy T (2013) Enhancement of oxidative stabilization of viscose rayon fibers impregnated with ammonium sulfate prior to carbonization and activation steps. J Appl Polym Sci 128:1239–1249. https://doi.org/10.1002/app.38496

    CAS  Article  Google Scholar 

  16. Kozłowski RM, Muzyczek M (2020) 10—Improving the flame retardancy of natural fibres. In: The textile institute book series. Woodhead Publishing, pp 355–391

  17. LeVan SL (1984) Chemistry of fire retardancy. In: The chemistry of solid wood. American Chemical Society, pp 531–574

  18. LeVan SL, Tran HC (1990) The role of boron in flame-retardant treatments. In: First International conference on wood protection with diffusible preservatives. Forest Products Research Society, Nashville, TN, Madison, WI, pp 39–41

  19. Lewin M (1985) Handbook of fiber science and technology Volume 2: chemical processing of fibers and fabrics—functional finishes. Marcel Dekker, Inc, New York, NY

    Google Scholar 

  20. Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis. Fuel 80:1809–1817. https://doi.org/10.1016/S0016-2361(01)00064-3

    CAS  Article  Google Scholar 

  21. Ma Y, Asaadi S, Johansson L-S et al (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. Chem Sus Chem 8:4030–4039. https://doi.org/10.1002/cssc.201501094

    CAS  Article  Google Scholar 

  22. Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Morrey EL (2003) Flame retardant composite materials: Measurement and modelling of ignition properties. J Therm Anal Calorim 72:943–954

    CAS  Article  Google Scholar 

  24. Ogale AA, Zhang M, Jin J (2016) Recent advances in carbon fibers derived from biobased precursors. J Appl Polym Sci 133. https://doi.org/10.1002/app.43794

  25. Olsson C, Sjöholm E, Reimann A (2017) Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps. Holzforschung 71:275–283. https://doi.org/10.1515/hf-2016-0189

    CAS  Article  Google Scholar 

  26. Pappin B, Kiefel MJ, Houston TA (2012) Boron-carbohydrate interactions. In: Carbohydrates—comprehensive studies on glycobiology and glycotechnology. InTech, Rijeka

    Google Scholar 

  27. Peak D, Luther G, Sparks D (2003) ATR-FTIR Spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta 67:2551–2560. https://doi.org/10.1016/S0016-7037(03)00096-6

    CAS  Article  Google Scholar 

  28. Romanos J, Beckner M, Stalla D et al (2013) Infrared study of boron-carbon chemical bonds in boron-doped activated carbon. Carbon 54:208. https://doi.org/10.1016/j.carbon.2012.11.031

    CAS  Article  Google Scholar 

  29. Roth M, Schwarzinger C, Mueller U, Schmidt H (2007) Determination of reaction mechanisms and evaluation of flame retardants in wood-melamine resin-composites. J Anal Appl Pyrolysis 79:306–312. https://doi.org/10.1016/j.jaap.2006.10.002

    CAS  Article  Google Scholar 

  30. Schuyten HA, Weaver JW, Reid JD (1955) Effect of flameproofing agents on cotton cellulose. Ind Eng Chem 47:1433–1439. https://doi.org/10.1021/ie50547a049

    CAS  Article  Google Scholar 

  31. Shawgi N, Li SX, Wang S (2017) A novel method of synthesis of high purity nano plated boron carbide powder by a solid-state reaction of poly (vinyl alcohol) and boric acid. Ceram Int 43:10554–10558. https://doi.org/10.1016/j.ceramint.2017.05.120

    CAS  Article  Google Scholar 

  32. Strong SL (1974) Small-scale heat-treatment of rayon precursors for stress-graphitization. J Mater Sci 9:993–1003. https://doi.org/10.1007/BF00570395

    CAS  Article  Google Scholar 

  33. Weser U (2008) Chemistry and structure of some borate polyol compounds of biochemical interest. In: Structure and bonding. Springer, Berlin Heidelberg, pp 160–180

    Google Scholar 

  34. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    CAS  Article  Google Scholar 

  35. Zhang Y, Zhang W, Lu W (2016) Effect on tensile strength of wood-based carbon fiber impregnated by boron. BioResources 11:5075–5082. https://doi.org/10.15376/biores.11.2.5075-5082

    CAS  Article  Google Scholar 

Download references

Acknowledgments

MT and MH have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 715788).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Russell J. Varley.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, ND., Trogen, M., Varley, R.J. et al. Effect of boric acid on the stabilisation of cellulose-lignin filaments as precursors for carbon fibres. Cellulose 28, 729–739 (2021). https://doi.org/10.1007/s10570-020-03584-x

Download citation

Keywords

  • Biopolymer
  • Low-cost carbon fibres
  • Cellulose-lignin composite fibres
  • Boric acid
  • Fibre fusion