Skip to main content

Understanding the influence of key parameters on the stabilisation of cellulose-lignin composite fibres


The high cost of carbon fibre continues to limit its use in industries like automotive, construction and energy. Since the cost is closely linked to the precursor, considerable research has focussed on the use of low-cost alternatives. A promising candidate is a composite fibre consisting of blended cellulose and lignin, which has the added benefit of being derived from sustainable resources. The benefits of blending cellulose and lignin reduce some of the negative aspects of converting single component cellulose and lignin fibres to carbon fibre, although the production from such a blend, remains largely underdeveloped. In this study, the effects of stabilisation temperature and the stabilisation process of the blended fibres are explored. Moreover, the viscoelastic properties of the cellulose-lignin fibre are investigated by DMA for the first time. Finally, the cause of fusion in the stabilisation is adressed and solved by applying a spin finish.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Bajaj P (1997) Spin finishes for manufactured fibres. In: Manufactured fibre technology. Springer, New York, pp 139–169

  2. Bajpai P (2017) Carbon fibre from lignin. Springer, New York

    Book  Google Scholar 

  3. Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124:227–234.

    CAS  Article  Google Scholar 

  4. Bengtsson A, Bengtsson J, Sedin M, Sjöholm E (2019) Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions. ACS Sustain Chem Eng 7:8440–8448.

    CAS  Article  Google Scholar 

  5. Bohner J, Weeber M, Kuebler F, Steinhilper R (2015) Developing a learning factory to increase resource efficiency in composite manufacturing processes BT - 5th Conference on Learning Factories 2015, July 7, 2015–July 8, 2015. Elsevier, Amsterdam, pp 64–69

  6. Boukir A, Fellak S, Doumenq P (2019) Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Heliyon 5:e02477.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brodin I, Ernstsson M, Gellerstedt G, Sjöholm E (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung.

    Article  Google Scholar 

  8. Brunner PH, Roberts PV (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon N Y 18:217–224.

    CAS  Article  Google Scholar 

  9. Byrne N, De Silva R, Ma Y et al (2018) Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25:723–733.

    CAS  Article  PubMed  Google Scholar 

  10. Cho M, Karaaslan M, Chowdhury S et al (2018) Skipping oxidative thermal stabilization for lignin-based carbon nanofibers. ACS Sustain Chem Eng 6:6434–6444.

    CAS  Article  Google Scholar 

  11. Choi D, Kil HS, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon N Y 142:610–649.

    CAS  Article  Google Scholar 

  12. De Nardo L, Farè S (2017) Dynamico-mechanical characterization of polymer biomaterials. Charact Polym Biomater.

    Article  Google Scholar 

  13. Ebeling H, Fink H-P, Lehmann A (2012) Method for the production of lignin-containing precursor fibres and also carbon fibres

  14. Fang W, Yang S, Wang X-L et al (2017) Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19:1794–1827.

    CAS  Article  Google Scholar 

  15. Ford CE, Mitchell C V. (1963) Fibrous graphite. US Pat. 3,107,152 1-5

  16. Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: Precursors, manufacturing, and properties. Macromol Mater Eng 297:493–501.

    CAS  Article  Google Scholar 

  17. Frank E, Steudle LM, Ingildeev D et al (2014) Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chemie - Int Ed 53:5262–5298.

    CAS  Article  Google Scholar 

  18. Garoff N, Protz R, Erdmann J, et al (2016) A process for the manufacture of a precursor yarn

  19. Ghysels S, Ronsse F, Dickinson D, Prins W (2019) Production and characterization of slow pyrolysis biochar from lignin-rich digested stillage from lignocellulosic ethanol production. Biomass Bioenergy 122:349–360.

    CAS  Article  Google Scholar 

  20. Hosseinaei O, Harper DP, Bozell JJ, Rials TG (2017) Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends. Int J Mol Sci.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang X (2009) Fabrication and properties of carbon fibers. Materials (Basel) 2:2369–2403.

    CAS  Article  Google Scholar 

  22. Jiang W, Sun L, Hao A, Chen J (2011) Regenerated cellulose fibers from waste bagasse using ionic liquid. Text Res J 81:1949–1958.

    CAS  Article  Google Scholar 

  23. Kadla JF, Kubo S, Venditti RA et al (2002) Lignin-based carbon fibers for composite fiber applications. Carbon N Y 40:2913–2920.

    CAS  Article  Google Scholar 

  24. Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132.

    CAS  Article  Google Scholar 

  25. Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911.

    CAS  Article  Google Scholar 

  26. Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444.

    CAS  Article  Google Scholar 

  27. Lobo H, Bonilla J V. (2003) Handbook of Plastics Analysis. Marcel Dekker

  28. Lu H, Cornell A, Alvarado F et al (2016) Lignin as a binder material for eco-friendly Li-Ion batteries. Materials (Basel) 9:127.

    CAS  Article  PubMed Central  Google Scholar 

  29. Ma Y, Asaadi S, Johansson L-S et al (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. Chemsuschem 8:4030–4039.

    CAS  Article  PubMed  Google Scholar 

  30. Mikkilä J, Trogen M, Koivu KAY et al (2020) Fungal treatment modifies Kraft lignin for lignin- and cellulose-based carbon fiber precursors. ACS Omega 5:6130–6140.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Morgan P (2005) carbon fibers and their composites. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Nunna S, Naebe M, Hameed N et al (2016) Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres. Polym Degrad Stab 125:105–114.

    CAS  Article  Google Scholar 

  33. Ogale AA, Zhang M, Jin J (2016) Recent advances in carbon fibers derived from biobased precursors. J Appl Polym Sci.

    Article  Google Scholar 

  34. Olsson C, Sjöholm E, Reimann A (2017) Carbon fibres from precursors produced by dry-jet wet-spinning of Kraft lignin blended with Kraft pulps. Holzforschung 71:275–283.

    CAS  Article  Google Scholar 

  35. Shrivastava A (2018) Plastic properties and testing. In: Introduction to plastics engineering. Elsevier, Amsterdam, pp 49–110

  36. Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48:1485–1491.

    CAS  Article  Google Scholar 

  37. Tang M, Bacon R (1964) Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon N Y 2:211–220.

    CAS  Article  Google Scholar 

  38. Torregrosa MEM, Diez JC (2015) Reactions and mechanisms in thermal analysis of advanced materials. Wiley Online Library

  39. Uraki Y, Kubo S, Nigo N et al (1995) Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 49:343–350.

    CAS  Article  Google Scholar 

  40. Vincent S, Prado R, Kuzmina O et al (2018) Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustain Chem Eng 6:5903–5910.

    CAS  Article  Google Scholar 

  41. Zhang M, Jin J, Ogale A (2015) Carbon fibers from UV-assisted stabilization of lignin-based precursors. Fibers 3:184–196.

    CAS  Article  Google Scholar 

Download references


MT and MH have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 715788).

Author information



Corresponding author

Correspondence to Russell J. Varley.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, ND., Trogen, M., Ma, Y. et al. Understanding the influence of key parameters on the stabilisation of cellulose-lignin composite fibres. Cellulose 28, 911–919 (2021).

Download citation


  • Bio-polymer
  • Cellulose-lignin composite fibres
  • Low-cost carbon fibres
  • DMA
  • Stabilisation
  • Viscoelastic
  • Bio-resources