Skip to main content
Log in

Facile fabrication of super-hydrophilic cellulose hydrogel-coated mesh using deep eutectic solvent for efficient gravity-driven oil/water separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of sustainable, low-cost, green and efficient oil–water separation materials is an attractive and challenging work. Oil/water separation process has been achieved by a variety of materials with special wettability, but most materials require complex instruments or involve toxic and corrosive chemicals, which might lead to some potential economic and environmental issues. Our work proposed here is a novel super-hydrophilic, underwater super-oleophobic cellulose hydrogel-coated mesh (CHCM) which produced by deep eutectic solvent, aimed for efficient gravity-driven oil/water separation. Based on this pre-wet CHCM, the separation efficiency of various oil–water mixtures was above 98.0%, and the results also showed that CHCM has good recyclability and durability, even after 20 cycles, the separation efficiency also maintained at 98.5%. Impressively, the prepared CHCM also exhibited good salt resistance; it can separate a high efficiency pump oil mixture from a saturated aqueous NaCl solution. Through XPS analysis of CHCM, the oil–water separation mechanism is due to the large number of super-hydrophilic groups on its surface. This simple, green, and efficient method overcomes an important barrier to the safe separation of oil–water mixtures and provides insights into the design of advanced materials for practical oil–water separation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ao C, Yuan W, Zhao J, He X, Zhang X, Li Q, Xia T, Zhang W, Lu C (2017) Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydr Polym 175:216–222

    CAS  PubMed  Google Scholar 

  • Ao C, Hu R, Zhao J, Zhang X, Li Q, Xia T, Zhang W, Lu C (2018) Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation. Chem Eng J 338:271–277

    CAS  Google Scholar 

  • Cai D, Ma P (2019) Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil–water separation. Compos Commun 14:1–6

    Google Scholar 

  • Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442

    CAS  PubMed  Google Scholar 

  • Chen F, Song J, Liu Z, Liu J, Zheng H, Huang S, Sun J, Xu W, Liu X (2016) Atmospheric pressure plasma functionalized polymer mesh: an environmentally friendly and efficient tool for oil/water separation. ACS Sustain Chem Eng 4:6828–6837

    CAS  Google Scholar 

  • Chen J, Shi X, Ren L, Wang Y (2017) Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon 111:18–27

    CAS  Google Scholar 

  • De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal–poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromol 17:649–660

    Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Google Scholar 

  • Ejaz Ahmed F, Lalia BS, Hilal N, Hashaikeh R (2014) Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination 344:48–54

    CAS  Google Scholar 

  • Errokh A, Magnin A, Putaux J, Boufi S (2018) Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose 25:3899–3911

    CAS  Google Scholar 

  • Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem 116:2046–2048

    Google Scholar 

  • Gao X, Xu L, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X (2014) Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Adv Mater 26:1771–1775

    CAS  PubMed  Google Scholar 

  • Ge J, Zhao H, Zhu H, Huang J, Shi L, Yu S (2016) Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv Mater 28:10459–10490

    CAS  PubMed  Google Scholar 

  • Gu J, Xiao P, Chen J, Zhang J, Huang Y, Chen T (2014) Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl Mater Interfaces 6:16204–16209

    CAS  PubMed  Google Scholar 

  • Huang Y, Li H, Wang L, Qiao Y, Tang C, Jung C, Yoon Y, Li S, Yu M (2015) Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Adv Mater Interfaces 2:1400433

    Google Scholar 

  • Ju H, McCloskey BD, Sagle AC, Wu Y, Kusuma VA, Freeman BD (2008) Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. J Membr Sci 307:260–267

    CAS  Google Scholar 

  • Li J, Shi L, Chen Y, Zhang Y, Guo Z, Su B, Liu W (2012) Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J Mater Chem 22:9774

    CAS  Google Scholar 

  • Li L, Zhang G, Su Z (2016a) One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew Chem Int Ed 55:9093–9096

    CAS  Google Scholar 

  • Li Y, Zhang H, Fan M, Zhuang J, Chen L (2016b) A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil–water separation in marine environments. Phys Chem Chem Phys PCCP 18:25394–25400

    CAS  PubMed  Google Scholar 

  • Li P, Sirviö JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9:2846–2855

    CAS  PubMed  Google Scholar 

  • Liu L, Chen C, Yang S, Xie H, Gong M, Xu X (2016) Fabrication of superhydrophilic-underwater superoleophobic inorganic anti-corrosive membranes for high-efficiency oil/water separation. Phys Chem Chem Phys 18:1317–1325

    CAS  PubMed  Google Scholar 

  • Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631

    CAS  Google Scholar 

  • Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12:2186–2202

    CAS  PubMed  Google Scholar 

  • Ma Q, Cheng H, Yu Y, Huang Y, Lu Q, Han S, Chen J, Wang R, Fane AG, Zhang H (2017) Preparation of superhydrophilic and underwater superoleophobic nanofiber-based meshes from waste glass for multifunctional oil/water separation. Small 13:1700391

    Google Scholar 

  • Maguire-Boyle SJ, Barron AR (2011) A new functionalization strategy for oil/water separation membranes. J Membr Sci 382:107–115

    CAS  Google Scholar 

  • Obaid M, Barakat NAM, Fadali OA, Motlak M, Almajid AA, Khalil KA (2015) Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem Eng J 259:449–456

    CAS  Google Scholar 

  • Pan Q, Wang M, Wang H (2008) Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes. Appl Surf Sci 254:6002–6006

    CAS  Google Scholar 

  • Phiri I, Eum KY, Kim JW, Choi WS, Kim SH, Ko JM, Jung H (2019) Simultaneous complementary oil–water separation and water desalination using functionalized woven glass fiber membranes. J Ind Eng Chem 73:78–86

    CAS  Google Scholar 

  • Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc 138:1727–1748

    CAS  PubMed  Google Scholar 

  • Tao M, Xue L, Liu F, Jiang L (2014) An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv Mater 26:2943–2948

    CAS  PubMed  Google Scholar 

  • Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010

    Google Scholar 

  • Wang B, Liang W, Guo Z, Liu W (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361

    PubMed  Google Scholar 

  • Wang X, Xu S, Tan Y, Du J, Wang J (2016a) Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil–water separation. Carbohydr Polym 140:188–194

    CAS  PubMed  Google Scholar 

  • Wang X, Yu J, Sun G, Ding B (2016b) Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater Today 19:403–414

    CAS  Google Scholar 

  • Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273

    CAS  PubMed  Google Scholar 

  • Xue C, Ji P, Zhang P, Li Y, Jia S (2013) Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Appl Surf Sci 284:464–471

    CAS  Google Scholar 

  • Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460

    CAS  Google Scholar 

  • Yin K, Chu D, Dong X, Wang C, Duan J, He J (2017) Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 9:14229–14235

    CAS  PubMed  Google Scholar 

  • Yoon H, Na S, Choi J, Latthe SS, Swihart MT, Al-Deyab SS, Yoon SS (2014) Gravity-driven hybrid membrane for oleophobic–superhydrophilic oil–water separation and water purification by graphene. Langmuir 30:11761–11769

    CAS  PubMed  Google Scholar 

  • Yu Z, Yun FF, Gong Z, Yao Q, Dou S, Liu K, Jiang L, Wang X (2017) A novel reusable superhydrophilic NiO/Ni mesh produced by a facile fabrication method for superior oil/water separation. J Mater Chem A 5:10821–10826

    CAS  Google Scholar 

  • Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704

    CAS  Google Scholar 

  • Zhang S, Lu F, Tao L, Liu N, Gao C, Feng L, Wei Y (2013a) Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad pH range and hyper-saline environments. ACS Appl Mater Interfaces 5:11971–11976

    CAS  PubMed  Google Scholar 

  • Zhang X, Li Z, Liu K, Jiang L (2013b) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886

    CAS  Google Scholar 

  • Zhang Q, Liu N, Wei Y, Feng L (2018) Facile fabrication of hydrogel coated membrane for controllable and selective oil-in-water emulsion separation. Soft Matter 14:2649–2654

    CAS  PubMed  Google Scholar 

  • Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208–7214

    CAS  PubMed  Google Scholar 

  • Zhou K, Zhang QG, Li HM, Guo NN, Zhu AM, Liu QL (2014) Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale 6:10363

    CAS  PubMed  Google Scholar 

  • Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S (2016a) Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chem Eng J 301:249–256

    CAS  Google Scholar 

  • Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016b) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416

    CAS  Google Scholar 

  • Zhou C, Cheng J, Hou K, Zhu Z, Zheng Y (2017) Preparation of CuWO4@ Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem Eng J 307:803–811

    CAS  Google Scholar 

  • Zhu X, Tu W, Wee K, Bai R (2014) Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J Membr Sci 466:36–44

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 21978248, 21676223), the special fund for Fujian Ocean High-Tech Industry Development (No. FJHJF-L-2018-1), China, and the Natural Science Foundation of Fujian, China (No. 2019J06005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhai Zeng or Lu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5960 kb)

Supplementary material 2 (MP4 36295 kb)

Supplementary material 3 (MP4 54423 kb)

Supplementary material 4 (MP4 27257 kb)

Supplementary material 5 (MP4 22381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, J., Yu, X. et al. Facile fabrication of super-hydrophilic cellulose hydrogel-coated mesh using deep eutectic solvent for efficient gravity-driven oil/water separation. Cellulose 28, 949–960 (2021). https://doi.org/10.1007/s10570-020-03578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03578-9

Keywords

Navigation