Skip to main content

Biocompatible composite of cellulose nanocrystal and hydroxyapatite with large mechanical strength

Abstract

Exploring the simple fabrication process to prepare CNC@HAp for biological tissues is still a challenging subject considering the wide applications of the composites for bio tissues. In this work, aiming for the fabrication of CNC@HAp composites via a simple and environment-friendly process and materials, we propose the neutralization titration in the presence of CNCs in the suspension. Core–shell structured composite of cellulose nanocrystal (CNC) and hydroxyapatite (HAp) (CNC@HAp) was successfully synthesized via simple aqueous neutralization titration. The method studied successfully hybridizes CNCs with a certain amount of HAps and easily controls the coating amounts of HAps from 9 wt% to 17 wt%. In particular, CNC@HAp pellets were easily prepared by simple compression molding from the powder of hybridized CNCs and HAps and the pellets showed high mechanical strength of over 500 N with a low strain of less than 5%. Both the process and the product of the study were environmental-friendly, no toxicity, simple and pure therefore the CNC@HAp can be easily applied to tissue engineering and medical purposes.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CNC:

Cellulose Nanocrystal

HAp:

Hydroxyapatite

CNC@HAp:

Composite of cellulose and hydroxyapatite

References

  1. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59:8149–8167. https://doi.org/10.1021/acs.jmedichem.5b01770

    CAS  Article  PubMed  Google Scholar 

  2. Ansari M (2019) Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 8:223–237. https://doi.org/10.1007/s40204-019-00125-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Araki J (2013) Soft matter, electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141. https://doi.org/10.1039/c3sm27514k

    CAS  Article  Google Scholar 

  4. Araki J, Arita T (2017) Production of ultrafine dry powders of surface-intact and unmodified cellulose nanowhiskers via homogenization in nonpolar organic solvents. Chem Lett 46:1438–1441. https://doi.org/10.1216/cl.1705887

    CAS  Article  Google Scholar 

  5. Asscher YWS, Boaretto E (2011) Variations in atomic disorder in biogenic carbonate hydroxyapatite using the infrared spectrum grinding curve method. Adv Funct Mater 21:3308–3313. https://doi.org/10.1002/adfm.201100266

    CAS  Article  Google Scholar 

  6. Azizi Samir SA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. https://doi.org/10.1021/bm0493685

    CAS  Article  Google Scholar 

  7. Battista OA, Smith PA (1962) Microcrystalline cellulose. Ind Eng Chem 54(9):20–29. https://doi.org/10.1021/ie50633a003

    CAS  Article  Google Scholar 

  8. Brown RM Jr (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part A: Polym Chem 42:487–495. https://doi.org/10.1002/pola.10877

    CAS  Article  Google Scholar 

  9. Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14(4):1223–1230. https://doi.org/10.1021/bm400219u

    CAS  Article  Google Scholar 

  10. Fujisawa S, Saito T, Isogai A (2018) All cellulose (cellulose-cellulose) green composites. Adv Green Compos. https://doi.org/10.1002/9781119323327.ch6

    Article  Google Scholar 

  11. Halder P, Kundu S, Patel S, Parthasarathy R, Pramanik B, Paz-Ferreiro J, Shah K (2019) TGA-FTIR study on the slow pyrolysis of lignin and cellulose-rich fractions derived from imidazolium-based ionic liquid pre-treatment of sugarcane straw. Energy Convers Manage 200:112067. https://doi.org/10.1016/j.enconman.2019.112067

    CAS  Article  Google Scholar 

  12. Hiew TN, Tian YH, Tan HM, Heng PWS (2019) A mechanistic understanding of compression damage to the dissolubility of coated pellets in tablets. Eur J Pharm Biopharm 146:93–100. https://doi.org/10.1016/j.ejpb.2019.11.006

    CAS  Article  PubMed  Google Scholar 

  13. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318. https://doi.org/10.1039/c2nr30383c

    CAS  Article  PubMed  Google Scholar 

  14. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/c0nr00583e

    CAS  Article  PubMed  Google Scholar 

  15. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576. https://doi.org/10.1021/bm900520n

    CAS  Article  Google Scholar 

  16. Kandori K, Yamaguchi Y (2017) Synthesis and characterization of Mn-doped calcium hydroxyapatite particles. Phosphorus Res Bull 33:26–34. https://doi.org/10.3363/prb.33.26

    CAS  Article  Google Scholar 

  17. Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotube. Acc Chem Res 46:702–713. https://doi.org/10.1021/qr300028m

    CAS  Article  PubMed  Google Scholar 

  18. Maurer P, Pistner H, Schubert J (2006) Computer assisted chewing power in patients with segmental resection of the mandible. MKG 10:37–41. https://doi.org/10.1007/s10006-005-0656-y

    CAS  Article  PubMed  Google Scholar 

  19. Nakakubo K, Hasegawa H, Ito M, Yamazaki K, Miyaguchi M, Biswas FB, Ikaki T, Maeda K (2019) Dithiocarbamate-modified cellulose resins: a novel adsorbent for selective removal of arsenite from aqueous media. J Hazard Mater 380:120816. https://doi.org/10.1016/j.jhazmat.2019.120816

    CAS  Article  PubMed  Google Scholar 

  20. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Parkd WH, Youke JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.jhazmat.2019.120816

    CAS  Article  PubMed  Google Scholar 

  21. Reyes-Gasga J, Martínez-Piñeiro EL, Rodríguez-Álvare G, Tiznado-Orozco GE, García-García R, Brès EF (2013) XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C 33:4568–4574. https://doi.org/10.1016/j.msec.2013.07.014

    CAS  Article  Google Scholar 

  22. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An Ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14:248–253. https://doi.org/10.1021/bm301674e

    CAS  Article  Google Scholar 

  23. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387. https://doi.org/10.1016/j.compscitech.2010.12.007

    CAS  Article  Google Scholar 

  24. Shito K, Matsui J, Takahashi Y, Masuhara A, Arita T (2018) Proton Conductivity of poly(acrylic acid)-b-polystyrene-coated silica nanoparticles synthesized by reversible addition-fragmentation chain transfer polymerization with particles. Chem Lett 47:9–12. https://doi.org/10.1246/cl.170752

    CAS  Article  Google Scholar 

  25. Souza Lima MM, Borsali R (2004) Rodlike Cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. https://doi.org/10.1002/marc.200300268

    CAS  Article  Google Scholar 

  26. Yin N, Chen S, Ouyang Y, Tang L, Yang J, Wang H (2011) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci: Mater Int 21:472–477. https://doi.org/10.1016/S1002-0071(12)60085-9

    Article  Google Scholar 

  27. Yoshida A, Miyazaki T, Ashizuka M, Ishida E (2006) Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J Biomater Appl 21:179–194. https://doi.org/10.1177/0885328206059796

    CAS  Article  PubMed  Google Scholar 

  28. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B: Polym Phys 40:1521–1529. https://doi.org/10.1002/polb.10215

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the cooperative research program of “Network Joint Research Center for Materials and Devices” and JSPS KAKENHI No. JP18H01717.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Toshihiko Arita or Akito Masuhara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1495 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sato, R., Arita, T., Shimada, R. et al. Biocompatible composite of cellulose nanocrystal and hydroxyapatite with large mechanical strength. Cellulose 28, 871–879 (2021). https://doi.org/10.1007/s10570-020-03550-7

Download citation

Keywords

  • Cellulose nanocrystal
  • Hydroxyapatite
  • Biomedical materials
  • Tissue engineering materials
  • Dental materials
  • Sustainable development goals (SDGs)