Skip to main content
Log in

Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly(acrylic acid) hydrogel nanocomposites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To prepare superabsorbent hydrogels, starch-graft-poly(acrylic acid) reinforced by cellulose nanofibers (CNF), was synthesized through free radical graft polymerization. The results of its biocompatibility tests exhibited that by increasing incubation time from 1 to 5 days, the numbers of living cells were increased on both reinforced and unreinforced hydrogels. However, the fraction of cells on the surfaces of the reinforced hydrogel is comparable to unreinforced samples. The swelling amounts in NaCl, CaCl2, and AlCl3 solutions were 193 ± 9, 110 ± 8, and 99 ± 7 (gwater/gabsorbent) for 5 wt% CNF-reinforced hydrogels and 109 ± 8, 62 ± 7, and 56 ± 6 (gwater/gabsorbent) for unreinforced hydrogels, respectively. Compressive strength and Young’s modulus of 5 wt% CNF-assisted hydrogels were also 63.3 and 31.6 kPa corresponding to 69% and 140% improvements compared with unreinforced one. The graft polymerization of acrylic acid monomer was controlled by monomer content and cross-linking percentage, in order to achieve the highest swelling capacity for hydrogels. Hydrogel swelling in water was 312 gwater/gabsorbent for unreinforced hydrogel and 523 gwater/gabsorbent for 5 wt% CNF-reinforced sample and water absorption kinetics results was in agreement with the pseudo-second-order model. The prepared CNF-reinforced starch-graft-poly(acrylic acid) hydrogels can be used in a wide range of medical application due to the enhanced hydrophilicity, mechanical strength, and biocompatibility.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data needed to reproduce these results cannot be shared at this time because of the time limitations.

References

  • Aouada FA, de Moura MR, Orts WJ, Mattoso LH (2011) Preparation and characterization of novel micro-and nanocomposite hydrogels containing cellulosic fibrils. J Agric Food Chem 59:9433–9442

    CAS  PubMed  Google Scholar 

  • Baboukani BS, Vossoughi M, Alemzadeh I (2012) Optimisation of dilute-acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw. Biosyst Eng 111:166–174

    Google Scholar 

  • Bakhshi H, Darvishi AJD, Treatment W (2016) Preparation and evaluation of hydrogel composites based on starch-g-PNaMA/eggshell particles as dye biosorbent. Desalin Water Treat 57:18144–18156

    CAS  Google Scholar 

  • Bardajee GR, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:298

    Google Scholar 

  • Bian H, Jiao L, Wang R, Wang X, Zhu W, Dai H (2018) Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel. Eur Polym J 107:267–274

    CAS  Google Scholar 

  • Bidgoli H, Zamani A, Taherzadeh MJ (2010) Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683–2689

    CAS  PubMed  Google Scholar 

  • Boateng SY, Hartman TJ, Ahluwalia N, Vidula H, Desai TA, Russell B (2003) Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography. Am J Physiol-Cell Physiol 285:C171–C182

    CAS  PubMed  Google Scholar 

  • Chen Y, Tan H (2006) Crosslinked carboxymethylchitosan-g-poly (acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341:887–896

    CAS  PubMed  Google Scholar 

  • Dai Q, Kadla JF (2009) Effect of nanofillers on carboxymethyl cellulose/hydroxyethyl cellulose hydrogels. J Appl Polym Sci 114:1664–1669

    CAS  Google Scholar 

  • de Azevedo AC, Vaz MG, Gomes RF, Pereira AG, Fajardo AR, Rodrigues FH (2017) Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran Polym J 26:93–105

    Google Scholar 

  • Deng Y, Wang H, Zhang L, Li Y, Wei SJ (2013) In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatite in agar-gelatin co-hydrogel. Mater Lett 104:8–12

    CAS  Google Scholar 

  • Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504

    CAS  PubMed  Google Scholar 

  • Fajardo AR, Fávaro SL, Rubira AF, Muniz ECJR, Polymers F (2013) Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. React Funct Polym 73:1662–1671

    CAS  Google Scholar 

  • Ferreira F, Dufresne A, Pinheiro I, Souza D, Gouveia R, Mei L, Lona LJ (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285

    CAS  Google Scholar 

  • Flory PJ, Rehner JJ Jr (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520

    CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588

    CAS  Google Scholar 

  • Gomes RF, de Azevedo ACN, Pereira AG, Muniz EC, Fajardo AR, Rodrigues FH (2015) Fast dye removal from water by starch-based nanocomposites. J Colloid Interface Sci 454:200–209

    CAS  PubMed  Google Scholar 

  • Güler MA, Gök MK, Figen AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Appl Clay Sci 112:44–52

    Google Scholar 

  • Hamidian H, Tavakoli T (2016) Preparation of a new Fe3O4/starch-g-polyester nanocomposite hydrogel and a study on swelling and drug delivery properties. Carbohydr Polym 144:140–148

    CAS  PubMed  Google Scholar 

  • Ho Y, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Protect 76:332–340

    CAS  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  • Huang S, Zhao Z, Feng C, Mayes E, Yang J (2018) Nanocellulose reinforced P (AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Compos Part A Appl Sci Manuf 112:395–404

    CAS  Google Scholar 

  • Jahanbaani AR, Behzad T, Borhani S, Darvanjooghi MHK (2016) Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym 17:1438–1448

    CAS  Google Scholar 

  • Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92:2193–2200

    CAS  PubMed  Google Scholar 

  • Kharaziha M et al (2013) PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34:6355–6366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WF, Chen YC (2004) Effect of bentonite on the physical properties and drug-release behavior of poly (AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J Appl Polym Sci 91:2934–2941

    CAS  Google Scholar 

  • Lee WF, Chen YC (2005) Effect of intercalated hydrotalcite on swelling and mechanical behavior for poly (acrylic acid-co-N-isopropylacrylamide)/hydrotalcite nanocomposite hydrogels. J Appl Polym Sci 98:1572–1580

    CAS  Google Scholar 

  • Li A, Liu R, Wang A (2005) Preparation of starch-graft-poly (acrylamide)/attapulgite superabsorbent composite. J Appl Polym Sci 98:1351–1357

    CAS  Google Scholar 

  • Li X, Xu S, Pen Y, Wang JJ (2008) The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly (dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J Appl Polym Sci 110:1828–1836

    CAS  Google Scholar 

  • Li M, Tshabalala MA, Buschle-Diller GJ (2016) Formulation and characterization of polysaccharide beads for controlled release of plant growth regulators. J Mater Sci 51:4609–4617

    CAS  Google Scholar 

  • Ling Z et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328

    CAS  Google Scholar 

  • Nawang R, Danjaji I, Ishiaku U, Ismail H, Ishak Z (2001) Mechanical properties of sago starch-filled linear low density polyethylene (LLDPE) composites. Polym Test 20:167–172

    CAS  Google Scholar 

  • Pachauri P, More S, Sullia S, Deshmukh SJB (2017) Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 11:1–7

    Google Scholar 

  • Pahlevan M, Toivakka M, Alam PJ (2018) Mechanical properties of TEMPO-oxidised bacterial cellulose-amino acid biomaterials. Eur Polym J 101:29–36

    CAS  Google Scholar 

  • Parvathy PC, Jyothi AN (2012a) Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly (acrylamide) Starch-Stärke. Bioresour Technol 64:207–218

    CAS  Google Scholar 

  • Parvathy PC, Jyothi AN (2012b) Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly (acrylamide). Starch-Stärke 64:207–218

    CAS  Google Scholar 

  • Pinheiro I, Ferreira F, Souza D, Gouveia R, Lona L, Morales A, Mei LJ (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365

    CAS  Google Scholar 

  • Reis AV, Guilherme MR, Moia TA, Mattoso LH, Muniz EC, Tambourgi EB (2008) Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. J Polym Sci, Part A: Polym Chem 46:2567–2574

    CAS  Google Scholar 

  • Schott HJ (1992) Swelling kinetics of polymers. J Macromol Sci Part B Phys 31:1–9

    CAS  Google Scholar 

  • Sethi J, Illikainen M, Sain M, Oksman KJ (2017) Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure. Eur Polym J 86:188–199

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DJ (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16

    Google Scholar 

  • Spagnol C et al (2012a) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    CAS  Google Scholar 

  • Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012b) Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237

    CAS  Google Scholar 

  • Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012c) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym 87:2038–2045

    CAS  Google Scholar 

  • Sun X-F, Wang H-H, Jing Z-X, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366

    CAS  PubMed  Google Scholar 

  • Tanan W, Panichpakdee J, Saengsuwan S (2018) Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur Polym J 112:678–687

    Google Scholar 

  • Usov I et al (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:7564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Chang PR, Zheng P, Ma X (2015) Monolithic porous rectorite/starch composites: fabrication, modification and adsorption. Appl Surf Sci 349:251–258

    CAS  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277

    CAS  PubMed  Google Scholar 

  • Xhanari K, Syverud K, Stenius P (2011) Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J Dispers Sci Technol 32:447–452

    CAS  Google Scholar 

  • Xia Z, Patchan M, Maranchi J, Elisseeff J, Trexler M (2013) Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J Appl Polym Sci 127:4537–4541

    CAS  Google Scholar 

  • Ye L et al (2016) Physical cross-linking starch-based zwitterionic hydrogel exhibiting excellent biocompatibility, protein resistance, and biodegradability. ACS Appl Mater Interfaces 8:15710–15723

    CAS  PubMed  Google Scholar 

  • Yue Y, Han J, Han G, French AD, Qi Y, Wu Q (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohydr Polym 147:155–164

    CAS  PubMed  Google Scholar 

  • Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6:18502–18510

    CAS  PubMed  Google Scholar 

  • Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339

    CAS  Google Scholar 

  • Zohuriaan-Mehr M, Pourjavadi A (2003) Superabsorbent hydrogels from starch-g-PAN: effect of some reaction variables on swelling behavior. J Polym Mater 20:113

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Isfahan University of Technology is gratefully appreciated. We also kindly appreciate Mr. Pejman Heidarian’s effort for his guidance on perfecting the language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Behzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadoran Baghbadorani, N., Behzad, T., Karimi Darvanjooghi, M.H. et al. Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly(acrylic acid) hydrogel nanocomposites. Cellulose 27, 9927–9945 (2020). https://doi.org/10.1007/s10570-020-03511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03511-0

Keywords

Navigation