Skip to main content
Log in

Microwave assisted catalytic hydrolysis of fibrous cellulose over framework catalysts: effects of acidity and pore structure

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Catalytic hydrolysis of fibrous cellulose (CHFC) over framework catalysts (HY zeolites, SBA-15 zeolites and MCM-41) was studied under the microwave (MW) irradiation (MW density of 5 kW/L) at 200 °C. Results showed that CHFC processes were enhanced by the mesoporous catalysts (cellulose conversion of ~ 40%, mcatalyst/mcellulose = 1/1) which is 225% higher than the conversion of catalyst-free system. Pore size and structure of the materials play a dominant role on the catalytic hydrolysis of polymer products and acidity plays a secondary role which will further decompose the secondary products, e.g. decomposing glucose and xylose into 5-HMF, furfural and low molecular acids. The catalyst kept high activity after used three times. The MW assisted CHFC mechanism is accounting for the first step decomposition of cellulose over MW system and then further transformation of short-chain cellulose molecules in the mesopores of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai H, Li C, Wang A, Xu G, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B Environ 123:333–338

    Article  Google Scholar 

  • Chen T, Xiong C, Tao Y (2018) Enhanced hydrolysis of cellulose in ionic liquid using mesoporous ZSM-5. Molecules 23:529

    Article  Google Scholar 

  • Dee SJ, Bell AT (2011) A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of Humins. Chemsuschem 4:1166–1173

    Article  CAS  Google Scholar 

  • Degirmenci V, Uner D, Cinlar B, Shanks BH, Yilmaz A, van Santen RA, Hensen EJ (2011) Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis. Catal Lett 141:33–42

    Article  CAS  Google Scholar 

  • Dora S, Bhaskar T, Singh R, Naik DV, Adhikari DK (2012) Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresource Technol 120:318–321

    Article  CAS  Google Scholar 

  • Fan J et al (2013) Direct microwave-assisted hydrothermal depolymerization of cellulose. J Am Chem Soc 135:11728–11731

    Article  CAS  Google Scholar 

  • Gao X, Li X, Zhang J, Sun J, Li H (2013) Influence of a microwave irradiation field on vapor–liquid equilibrium. Chem Eng Sci 90:213–220

    Article  CAS  Google Scholar 

  • Gao X, Liu X, Li X, Zhang J, Yang Y, Li H (2018) Continuous microwave-assisted reactive distillation column: Pilot-scale experiments and model validation. Chem Eng Sci 186:251–264

    Article  CAS  Google Scholar 

  • Hassanzadeh S, Aminlashgari N, Hakkarainen M (2014) Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohyd Polym 112:448–457

    Article  CAS  Google Scholar 

  • Hu L, Lin L, Wu Z, Zhou S, Liu S (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B Environ 174:225–243

    Article  Google Scholar 

  • Iris KM, Tsang DC (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technol 238:716–732

    Article  Google Scholar 

  • Jiang C, Zhong X, Luo Z (2014) An improved kinetic model for cellulose hydrolysis to 5-hydroxymethylfurfural using the solid SO42−/Ti-MCM-41 catalyst. RSC Adv 4:15216–15224

    Article  CAS  Google Scholar 

  • Jiang S, Daly H, Xiang H, Yan Y, Zhang H, Hardacre C, Fan X (2019) Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals. Front Chem Sci Eng 13:718–726

    Article  CAS  Google Scholar 

  • Kato Y, Sekine Y (2013) One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catal Lett 143:418–423

    Article  CAS  Google Scholar 

  • Levi N, Khenkin AM, Hailegnaw B, Neumann R (2016) Depolymerization of cellulose in water catalyzed by phenylboronic acid derivatives. ACS Sustain Chem Eng 4:5799–5803

    Article  CAS  Google Scholar 

  • Li H, Cui J, Liu J, Li X, Gao X (2017) Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures. Aiche J 63:1328–1337

    Article  CAS  Google Scholar 

  • Li H, Liu J, Li X, Gao X (2019a) Microwave-induced polar/nonpolar mixture separation performance in a film evaporation process. Aiche J 65:745–754

    Article  CAS  Google Scholar 

  • Li H, Zhang C, Pang C, Li X, Gao X (2020) The advances in the special microwave effects of the heterogeneous catalytic reactions. Front Chem 8:355

    Article  CAS  Google Scholar 

  • Li H, Zhao Z, Xiouras C, Stefanidis GD, Li X, Gao X (2019b) Fundamentals and applications of microwave heating to chemicals separation processes. Renew Sustain Energy Rev 114:109316

    Article  CAS  Google Scholar 

  • Lin CH, Conner AH, Hill CG Jr (1992) The heterogeneous character of the dilute acid hydrolysis of crystalline cellulose. III. Kinetic and X-ray data. J Appl Polym Sci 45:1811–1822

    Article  CAS  Google Scholar 

  • Liu X et al (2018) The degradation and saccharification of microcrystalline cellulose in aqueous acetone solution with low severity dilute sulfuric acid. Process Biochem 68:146–152

    Article  CAS  Google Scholar 

  • Ma HY, Zhao ZP, Lu P (2018) Cellulose hydrolysis by acidic ionic liquids enhanced with microwave heating. In: Advanced materials research. Trans Tech Publ, pp 75–79

  • Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts. Catal Today 302:87–93

    Article  CAS  Google Scholar 

  • Nandiwale KY, Galande ND, Thakur P, Sawant SD, Zambre VP, Bokade VV (2014) One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustain Chem Eng 2:1928–1932

    Article  CAS  Google Scholar 

  • Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  CAS  Google Scholar 

  • Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937

    Article  CAS  Google Scholar 

  • Qu H, Liu B, Li L, Zhou Y (2020) A bifunctional recoverable catalyst based on phosphotungstic acid for cellulose hydrolysis to fermentable sugars. Fuel Process Technol 199:106272

    Article  CAS  Google Scholar 

  • Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chemie 120:8167–8170

    Article  Google Scholar 

  • Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982

    Article  Google Scholar 

  • Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Suzuki S, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M (2018) Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv 8:14623–14632

    Article  CAS  Google Scholar 

  • Tan M, Zhao L, Zhang Y (2011) Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system. Biomass Bioenergy 35:1367–1370

    Article  CAS  Google Scholar 

  • Van de Vyver S et al (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563

    Article  Google Scholar 

  • Van Putten R, Van der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  Google Scholar 

  • Yu J, Wang J, Wang Z, Zhou M, Wang H (2018) Hydrolysis of cellulose promoted by silicalite-1 modified HY zeolite in 1-ethyl-3-methylimidazolium chloride. Cellulose 25:1607–1615

    Article  CAS  Google Scholar 

  • Zhang R et al (2019) On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis. Micropor Mesopor Mat 278:297–306

    Article  CAS  Google Scholar 

  • Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohyd Res 344:2069–2072

    Article  CAS  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  • Zhou C, Xia X, Lin C, Tong D, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901510 and KJQN201801528), the National Natural Science Foundation of China (No. 51708075), the Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-msxmX0491 and No. cstc2019jcyj-msxmX0401), China Postdoctoral Science Foundation (2020M673111) and Chongqing postdoctoral fund special funding for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songshan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Xiong, W., He, B. et al. Microwave assisted catalytic hydrolysis of fibrous cellulose over framework catalysts: effects of acidity and pore structure. Cellulose 28, 59–69 (2021). https://doi.org/10.1007/s10570-020-03510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03510-1

Keywords

Navigation