Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties

Abstract

In this present research, a novel microwave hydrothermal method was applied to cotton fabrics to develop a superhydrophobic surface by rapid synthesis of aligned ZnO nanorods on the surface of the cotton fabric. A two-step approach was used to grow the ZnO nanorods. Firstly, the cotton fabric was coated by a seed layer of ZnO nanocrystals, synthesized using the microwave-assisted sol gel method. Secondly, the ZnO nanorods were grown rapidly on the seeded cotton fabrics using the microwave hydrothermal method. Moreover, a layer of non-fluorinated silane was applied on the as-grown nanorods to fabricate a superhydrophobic surface. Non-fluorinated silane was selected as it is less harmful to the skin than fluorinated silanes. The effect of the zinc nitrate hexahydrate (Zn(NO3)2·6H2O) concentration, reaction time and microwave power on the growth of ZnO nanorods was investigated in detail using scanning electron microscopy. The surface topography and roughness of the nanorods grown on the fabrics were studied using atomic force microscopy. EDS analysis and X-ray diffraction techniques were used to study the structural properties of the ZnO nanorods. The ultraviolet protection properties were investigated by a UV–Vis-NIR spectrophotometer. The ZnO nanorods grown on the cotton fabrics exhibited excellent UV blocking properties. A maximum UPF value of 114 was observed for the ZnO nanorods grown on the cotton fabric with 100 mM of zinc nitrate hexahydrate (Zn(NO3)2·6H2O). The superhydrophobic properties were examined based on contact angle and roll-off angle measurements, where a maximum water contact angle of 170.2° and a minimum roll-off angle of 1° were found for 25 mM of zinc nitrate hexahydrate. The ZnO-OTMS coated fabrics were evaluated for superhydrophobic durability against mechanical abrasion, laundering, chemical and UV action. Moreover, the ZnO-OTMS coated fabrics showed excellent potential for separation of floating and underwater oil layers or an oil–water mixture.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2:18005–18011. https://doi.org/10.1039/C4TA02764G

    CAS  Article  Google Scholar 

  2. Ahmad F, Idrees F, Fazal-e-Aleem IF (2018) Recent advancements in microwave-assisted synthesis of NiO nanostructures and their supercapacitor properties: a comprehensive review. Curr Nanomater 3:5–17. https://doi.org/10.2174/2405461503666180305161202

    CAS  Article  Google Scholar 

  3. Aminayi P, Abidi N (2013) Imparting super hydro/oleophobic properties to cotton fabric by means of molecular and nanoparticles vapor deposition methods. Appl Surf Sci 287:223–231. https://doi.org/10.1016/j.apsusc.2013.09.132

    CAS  Article  Google Scholar 

  4. Ashraf M, Campagne C, Perwuelz A et al (2013) Development of superhydrophilic and superhydrophobic polyester fabric by growing zinc oxide nanorods. J Colloid Interface Sci 394:545–553. https://doi.org/10.1016/j.jcis.2012.11.020

    CAS  Article  PubMed  Google Scholar 

  5. Ashraf M, Champagne P, Campagne C et al (2014a) Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric. J Ind Text 45:1440–1456. https://doi.org/10.1177/1528083714562086

    CAS  Article  Google Scholar 

  6. Ashraf M, Dumont F, Campagne C et al (2014b) Development of antibacterial polyester fabric by growth of ZnO nanorods. J Eng Fiber Fabr 9:15–22

    CAS  Google Scholar 

  7. Ates ES, Unalan HE (2012) Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films 520:4658–4661. https://doi.org/10.1016/j.tsf.2011.10.073

    CAS  Article  Google Scholar 

  8. Bae GY, Min BG, Jeong YG et al (2009) Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci 337:170–175. https://doi.org/10.1016/j.jcis.2009.04.066

    CAS  Article  PubMed  Google Scholar 

  9. Becheri A, Durr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanoparticle Res 10:679–689. https://doi.org/10.1007/s11051-007-9318-3

    CAS  Article  Google Scholar 

  10. Boscher ND, Vaché V, Carminati P et al (2014) A simple and scalable approach towards the preparation of superhydrophobic surfaces-importance of the surface roughness skewness. J Mater Chem A 2:5744–5750. https://doi.org/10.1039/c4ta00366g

    CAS  Article  Google Scholar 

  11. Brahma S, Rao KJ, Shivashankar S (2010) Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution. Bull Mater Sci 33:89–95. https://doi.org/10.1007/s12034-010-0027-7

    CAS  Article  Google Scholar 

  12. Cheng D, He M, Li W et al (2019) Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor. Appl Surf Sci 467–468:534–542. https://doi.org/10.1016/j.apsusc.2018.10.177

    CAS  Article  Google Scholar 

  13. Das A, Deka J, Rather AM et al (2017) Strategic formulation of graphene oxide sheets for flexible monoliths and robust polymeric coatings embedded with durable bioinspired wettability†. ACS Appl Mater Interfaces 9:42354–42365. https://doi.org/10.1021/acsami.7b14028

    CAS  Article  PubMed  Google Scholar 

  14. Dedova T, Acik IO, Krunks M et al (2012) Effect of substrate morphology on the nucleation and growth of ZnO nanorods prepared by spray pyrolysis. Thin Solid Films 520:4650–4653. https://doi.org/10.1016/j.tsf.2011.11.068

    CAS  Article  Google Scholar 

  15. Edalati K, Shakiba A, Vahdati-Khaki J, Zebarjad SM (2016) Low-temperature hydrothermal synthesis of ZnO nanorods: effects of zinc salt concentration, various solvents and alkaline mineralizers. Mater Res Bull 74:374–379. https://doi.org/10.1016/j.materresbull.2015.11.001

    CAS  Article  Google Scholar 

  16. Ennaceri H, Wang L, Erfurt D et al (2016) Water-resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property. Surf Coat Technol 299:169–176. https://doi.org/10.1016/j.surfcoat.2016.04.056

    CAS  Article  Google Scholar 

  17. Feng L, Li S, Li Y et al (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860. https://doi.org/10.1002/adma.200290020

    CAS  Article  Google Scholar 

  18. Fujita S, Bhanage BM, Arai M et al (2010) Microwave-assisted additive free synthesis of nanocrystalline zinc oxide. Powder Technol 203:415–418. https://doi.org/10.1016/j.powtec.2010.05.036

    CAS  Article  Google Scholar 

  19. Gao X, Wen G, Guo Z (2018) Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need. Colloids Surf A Physicochem Eng Asp 559:115–126. https://doi.org/10.1016/j.colsurfa.2018.09.041

    CAS  Article  Google Scholar 

  20. Ghamsari MS, Alamdari S, Han W, Park HH (2017) Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomed 12:207–216. https://doi.org/10.2147/IJN.S118637

    CAS  Article  Google Scholar 

  21. Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105. https://doi.org/10.1016/j.vacuum.2011.04.025

    CAS  Article  Google Scholar 

  22. Grozea CM, Rabnawaz M, Liu G, Zhang G (2015) Coating of silica particles by fluorinated diblock copolymers and use of the resultant silica for superamphiphobic surfaces. Polymer (UK) 64:153–162. https://doi.org/10.1016/j.polymer.2015.03.041

    CAS  Article  Google Scholar 

  23. Gurav AB, Latthe SS, Vhatkar RS et al (2014) Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid. Ceram Int 40:7151–7160. https://doi.org/10.1016/j.ceramint.2013.12.052

    CAS  Article  Google Scholar 

  24. Gustafsson E, Larsson PA, Wågberg L (2012) Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks. Colloids Surf A Physicochem Eng Asp 414:415–421. https://doi.org/10.1016/j.colsurfa.2012.08.042

    CAS  Article  Google Scholar 

  25. Hasanpoor M, Aliofkhazraei M, Delavari H (2015) Microwave assisted synthesis of zinc oxide nanoparticles. Procedia Mater Sci 8:320–325. https://doi.org/10.1016/j.mspro.2015.11.101

    CAS  Article  Google Scholar 

  26. Hill D, Attia H, Barron AR, Alexander S (2019) Size and morphology dependent surface wetting based on hydrocarbon functionalized nanoparticles. J Colloid Interface Sci 543:328–334. https://doi.org/10.1016/j.jcis.2019.02.058

    CAS  Article  PubMed  Google Scholar 

  27. Hsieh CT, Wu FL, Yang SY (2008) Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surf Coat Technol 202:6103–6108. https://doi.org/10.1016/j.surfcoat.2008.07.006

    CAS  Article  Google Scholar 

  28. Hu XL, Zhu YJ, Wang SW (2004) Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater Chem Phys 88:421–426. https://doi.org/10.1016/j.matchemphys.2004.08.010

    CAS  Article  Google Scholar 

  29. Huang JY, Li SH, Ge MZ et al (2015) Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832. https://doi.org/10.1039/c4ta05332j

    CAS  Article  Google Scholar 

  30. Jeong SW, Bolortuya S, Eadi SB, Kim S (2020) Fabrication of superhydrophobic surfaces based on PDMS coated hydrothermal grown ZnO on PET fabrics. J Adhes Sci Technol 34:102–113. https://doi.org/10.1080/01694243.2019.1661609

    CAS  Article  Google Scholar 

  31. Kajbafvala A, Zanganeh S, Kajbafvala E et al (2010) Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. J Alloys Compd 497:325–329. https://doi.org/10.1016/j.jallcom.2010.03.057

    CAS  Article  Google Scholar 

  32. Karunakaran RG, Lu C, Zhang Z, Yang S (2011) Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles ( e 100 nm ). Langmuir 27:4594–4602

    CAS  Article  Google Scholar 

  33. Khan MZ, Baheti V, Militky J et al (2018) Superhydrophobicity, UV protection and oil/water separation properties of fly ash/trimethoxy(octadecyl)silane coated cotton fabrics. Carbohydr Polym 202:571–580. https://doi.org/10.1016/j.carbpol.2018.08.145

    CAS  Article  PubMed  Google Scholar 

  34. Khan MZ, Baheti V, Militky J et al (2020) Self-cleaning properties of polyester fabrics coated with flower-like TiO2 particles and trimethoxy (octadecyl)silane. J Ind Text 50:543–565. https://doi.org/10.1177/1528083719836938

    CAS  Article  Google Scholar 

  35. Küçük M, Öveçoğlu ML (2019) Fabrication of SiO2–ZnO NP/ZnO NR hybrid coated cotton fabrics: the effect of ZnO NR growth time on structural and UV protection characteristics. Cellulose 2:1773–1793. https://doi.org/10.1007/s10570-019-02891-2

    CAS  Article  Google Scholar 

  36. Latthe SS, Rao AV (2012) Superhydrophobic SiO2 micro-particle coatings by spray method. Surf Coat Technol 207:489–492. https://doi.org/10.1016/j.surfcoat.2012.07.055

    CAS  Article  Google Scholar 

  37. Li R, Che J, Zhang H et al (2014) Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot. J Nanoparticle Res. https://doi.org/10.1007/s11051-014-2581-1

    Article  Google Scholar 

  38. Li S, Huang J, Chen Z et al (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55. https://doi.org/10.1039/c6ta07984a

    CAS  Article  Google Scholar 

  39. Li S, Huang J, Ge M et al (2015) robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Adv Mater Interfaces 2:1500220. https://doi.org/10.1002/admi.201500220

    CAS  Article  Google Scholar 

  40. Li X, Chen X, Yi Z et al (2019) Fabriction of ZnO nanorods with strong UV absorption and different hydrophobicity on foamed nickel under different hydrothermal conditions. Micromachines. https://doi.org/10.3390/mi10030164

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu H, Gao SW, Cai JS et al (2016) Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials (Basel) 9:124. https://doi.org/10.3390/ma9030124

    CAS  Article  Google Scholar 

  42. Lu Y, Sathasivam S, Song J et al (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347:1132–1135. https://doi.org/10.1126/science.aaa0946

    CAS  Article  PubMed  Google Scholar 

  43. Mirzaei A, Neri G (2016) Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B Chem 237:749–775. https://doi.org/10.1016/j.snb.2016.06.114

    CAS  Article  Google Scholar 

  44. Motshekga SC, Pillai SK, Sinha Ray S et al (2012) Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater 2012:15. https://doi.org/10.1155/2012/691503

    CAS  Article  Google Scholar 

  45. Movahedi T, Norouzbeigi R (2019) Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: additive effect optimization via designed experiments. J Alloys Compd 795:483–492. https://doi.org/10.1016/j.jallcom.2019.04.343

    CAS  Article  Google Scholar 

  46. Nandi R, Major SS (2017) The mechanism of growth of ZnO nanorods by reactive sputtering. Appl Surf Sci 399:305–312. https://doi.org/10.1016/j.apsusc.2016.12.097

    CAS  Article  Google Scholar 

  47. Nosonovsky M, Bhushan B (2009) Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci 14:270–280. https://doi.org/10.1016/j.cocis.2009.05.004

    CAS  Article  Google Scholar 

  48. Pan C, Shen L, Shang S, Xing Y (2012) Preparation of superhydrophobic and UV blocking cotton fabric via sol–gel method and self-assembly. Appl Surf Sci 259:110–117. https://doi.org/10.1016/j.apsusc.2012.07.001

    CAS  Article  Google Scholar 

  49. Pandiyarasan V, Suhasini S, Archana J et al (2017) Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl Surf Sci 418:352–361. https://doi.org/10.1016/j.apsusc.2016.12.202

    CAS  Article  Google Scholar 

  50. Pant HR, Bajgai MP, Nam KT et al (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185:124–130. https://doi.org/10.1016/j.jhazmat.2010.09.006

    CAS  Article  PubMed  Google Scholar 

  51. Parbat D, Gaffar S, Rather AM et al (2017) A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Chem Sci 8:6542–6554. https://doi.org/10.1039/c7sc02296d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Polefka TG, Meyer TA, Agin PP (2011) Effects of solar radiation on the skin. J Cosmet Dermatol 11:134–143. https://doi.org/10.1111/j.1473-2165.2012.00614.x

    Article  Google Scholar 

  53. Polsongkram D, Chamninok P, Pukird S et al (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys B Condens Matter 403:3713–3717. https://doi.org/10.1016/j.physb.2008.06.020

    CAS  Article  Google Scholar 

  54. Preda N, Enculescu M, Zgura I et al (2013) Superhydrophobic properties of cotton fabrics functionalized with ZnO by electroless deposition. Mater Chem Phys 138:253–261. https://doi.org/10.1016/j.matchemphys.2012.11.054

    CAS  Article  Google Scholar 

  55. Qi G, Zhang H, Yuan Z (2011) Superhydrophobic brocades modified with aligned ZnO nanorods. Appl Surf Sci 258:662–667. https://doi.org/10.1016/j.apsusc.2011.06.167

    CAS  Article  Google Scholar 

  56. Rather AM, Manna U (2017) Stretchable and durable superhydrophobicity that acts both in air and under oil. J Mater Chem A 5:15208–15216. https://doi.org/10.1039/c7ta04073c

    CAS  Article  Google Scholar 

  57. Riaz S, Ashraf M, Hussain T et al (2019) Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloids Surf A Physicochem Eng Asp 581:123799. https://doi.org/10.1016/j.colsurfa.2019.123799

    CAS  Article  Google Scholar 

  58. Shinde VR, Gujar TP, Noda T et al (2010) Growth of shape- and size-selective zinc oxide nanorods by a microwave-assisted chemical bath deposition method: effect on photocatalysis properties. Chem Eur J 16:10569–10575. https://doi.org/10.1002/chem.200903370

    CAS  Article  PubMed  Google Scholar 

  59. Shirgholami MA, Shateri Khalil-Abad M, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process. J Colloid Interface Sci 359:530–535. https://doi.org/10.1016/j.jcis.2011.04.031

    CAS  Article  PubMed  Google Scholar 

  60. Skompska M, Zarȩbska K (2014) Electrodeposition of ZnO nanorod arrays on transparent conducting substrates—a review. Electrochim Acta 127:467–488. https://doi.org/10.1016/j.electacta.2014.02.049

    CAS  Article  Google Scholar 

  61. Taghizadeh SM, Lal N, Ebrahiminezhad A et al (2020) Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent. Nanomaterials 10:1–12. https://doi.org/10.3390/nano10030530

    CAS  Article  Google Scholar 

  62. Ul Hassan Sarwar Rana A, Kang M, Kim HS (2016) Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Sci Rep 6:1–13. https://doi.org/10.1038/srep24870

    CAS  Article  Google Scholar 

  63. Unalan HE, Hiralal P, Rupesinghe N et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19:255608. https://doi.org/10.1088/0957-4484/19/25/255608

    CAS  Article  PubMed  Google Scholar 

  64. Wahab R, Kim YS, Lee K, Shin HS (2010) Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J Mater Sci 45:2967–2973. https://doi.org/10.1007/s10853-010-4294-x

    CAS  Article  Google Scholar 

  65. Wang J, Geng G, Wang A et al (2015) Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup. Ind Crops Prod 77:36–43. https://doi.org/10.1016/j.indcrop.2015.08.044

    CAS  Article  Google Scholar 

  66. Xiong D, Liu G, Hong L, Duncan EJS (2011) Superamphiphobic diblock copolymer coatings. Chem Mater 23:4357–4366. https://doi.org/10.1021/cm201797e

    CAS  Article  Google Scholar 

  67. Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160

    CAS  Article  Google Scholar 

  68. Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Technol 204:1556–1561. https://doi.org/10.1016/j.surfcoat.2009.09.086

    CAS  Article  Google Scholar 

  69. Xu F, Lu Y, Xie Y, Liu Y (2009) Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater Des 30:1704–1711. https://doi.org/10.1016/j.matdes.2008.07.024

    CAS  Article  Google Scholar 

  70. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169:80–105. https://doi.org/10.1016/j.cis.2011.08.005

    CAS  Article  PubMed  Google Scholar 

  71. Zhang H, Yang D, Ma X et al (2006) Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. J Phys Chem B 110:827–830. https://doi.org/10.1021/jp055351k

    CAS  Article  PubMed  Google Scholar 

  72. Zhang M, Wang C, Wang S, Li J (2013) Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohydr Polym 97:59–64. https://doi.org/10.1016/j.carbpol.2012.08.118

    CAS  Article  PubMed  Google Scholar 

  73. Zhang ZH, Wang HJ, Liang YH et al (2018) One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22241-9

    CAS  Article  Google Scholar 

  74. Zhou Z, Zhao Y, Cai Z (2010) Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Appl Surf Sci 256:4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081

    CAS  Article  Google Scholar 

  75. Zhu T, Li S, Huang J et al (2017) Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil–water separation. Mater Des 134:342–351. https://doi.org/10.1016/j.matdes.2017.08.071

    CAS  Article  Google Scholar 

  76. Zhu X, Zhang Z, Ge B et al (2014) A versatile approach to produce superhydrophobic materials used for oil–water separation. J Colloid Interface Sci 432:105–108. https://doi.org/10.1016/j.jcis.2014.06.056

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technology Agency of the Czech Republic—Project No. TH03020534. The authors are also thankful to the student grant competition 21312 provided by the Technical University of Liberec.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zaman Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z., Militky, J., Baheti, V. et al. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose 27, 10519–10539 (2020). https://doi.org/10.1007/s10570-020-03495-x

Download citation

Keywords

  • Superhydrophobic
  • Cotton fabrics
  • Nanorods
  • Contact angle
  • UV protection