Terahertz complex conductivity of cellulose nanocrystal based composite films controlled with PEDOT:PSS blending ratio

Abstract

We investigate the terahertz complex conductivity spectra of cellulose nanocrystal (CNC) based composite films fabricated with different blending ratios of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and without/with glycerol additive. A partially localized nature of carriers in the composite is clearly seen in the obtained spectral shapes of complex conductivity and is well described by an extended Drude model. We find that the carriers become denser and less localized with increasing PEDOT:PSS blending ratio and that the addition of glycerol to the composite is efficacious in enhancing carrier delocalization as well as mechanical flexibility.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110:25462–25471

    CAS  PubMed  Google Scholar 

  2. Alam KM, Kar P, Thakur UK, Kisslinger R, Mahdi N, Mohammadpour A, Baheti PA, Kumar P, Shankar K (2019) Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites. J Mater Sci: Mater Electron 30:1390–1399

    CAS  Google Scholar 

  3. Andrianov AV, Aleshin AN, Khripunov AK, Trukhin VN (2015) Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth Metals 205:201–205

    CAS  Google Scholar 

  4. Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239

    CAS  PubMed  Google Scholar 

  5. Carnio BN, Ahvazi B, Elezzabi AY (2016) Terahertz properties of cellulose nanocrystals and films. J Infrared Millim Terahertz Waves 37:281–288

    CAS  Google Scholar 

  6. Cielecka I, Szustak M, Kalinowska H, Gendaszewska-Darmach E, Ryngajłło M, Maniukiewicz W, Bielecki S (2019) Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26:5409–5426

    CAS  Google Scholar 

  7. Cooke DG, Krebs FC, Jepsen PU (2012) Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film. Phys Rev Lett 108:056603

    CAS  PubMed  Google Scholar 

  8. Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73:193311

    Google Scholar 

  9. Crispin X, Marciniak S, Osikowicz W, Zotti G, van der Gon AWD, Louwet F, Fahlman M, Groenendaal L, de Schryver F, Salaneck WR (2003) Conductivity, morphology, interfacial chemistry, and stability of poly(3,4ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. J Polym Sci, Part B 41:2561

    CAS  Google Scholar 

  10. Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112:7928–7935

    CAS  Google Scholar 

  11. Darpentigny C, Molina-Boisseau S, Nonglaton G, Bras J, Jean B (2020) Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose 27:233–247

    CAS  Google Scholar 

  12. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16:220–227

    CAS  Google Scholar 

  13. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    CAS  Google Scholar 

  14. Elfwing A, Ponseca CS Jr, Ouyang L, Urbanowicz A, Krotkus A, Tu D, Forchheimer R, Inganäs O (2018) Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv Funct Mater 28:1706595

    Google Scholar 

  15. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    CAS  PubMed  Google Scholar 

  16. Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663

    CAS  Google Scholar 

  17. Greczynski G, Kugler T, Keil M, Osikowicz W, Fahlman M, Salaneck WR (2001) Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. J Electron Spectrosc Relat Phenom 121:1

    CAS  Google Scholar 

  18. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wagberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    CAS  Google Scholar 

  19. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    CAS  PubMed  Google Scholar 

  20. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  PubMed  Google Scholar 

  21. Jönsson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, van der Gon AWD, Salaneck WR, Fahlman M (2003) The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth Met 139:1

    Google Scholar 

  22. Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    PubMed  PubMed Central  Google Scholar 

  23. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  24. Ko Y, Kim J, Kim D, Kwon G, Yamauchi Y, You J (2019) Fabrication of highly conductive porous cellulose/PEDOT:PSS nanocomposite paper via post-treatment. Nanomaterials 9:612

    CAS  PubMed Central  Google Scholar 

  25. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165

    CAS  PubMed  Google Scholar 

  26. Lee K, Menon R, Yoon CO, Heeger AJ (1995) Reflectance of conducting polypyrrole: observation of the metal-insulator transition driven by disorder. Phys Rev B 52:4779–4787

    CAS  Google Scholar 

  27. Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925

    CAS  Google Scholar 

  28. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  29. Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Palumbiny CM, Heller C, Schaffer CJ, Körstgens V, Santoro G, Roth SV (2014) Molecular reorientation and structural changes in cosolvent treated highly conductive PEDOT:PSS electrodes for flexible indium tin oxide-free organic electronics. J Phys Chem C 118:13598–13606

    CAS  Google Scholar 

  31. Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201

    CAS  PubMed  Google Scholar 

  32. Smith NV (2001) Classical generalization of the Drude formula for the optical conductivity. Phys Rev B 64:155106

    Google Scholar 

  33. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105

    CAS  Google Scholar 

  34. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719

    CAS  Google Scholar 

  35. Unuma T, Fujii K, Kishida H, Nakamura A (2010) Terahertz complex conductivities of carriers with partial localization in doped polythiophenes. Appl Phys Lett 97:033308

    Google Scholar 

  36. Unuma T, Umemoto A, Kishida H (2013a) Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl Phys Lett 103:213305

    Google Scholar 

  37. Unuma T, Yamada N, Nakamura A, Kishida H, Lee S-C, Hong E-Y, Lee S-H, Kwon O-P (2013b) Direct observation of carrier delocalization in highly conducting polyaniline. Appl Phys Lett 103:053303

    Google Scholar 

  38. Unuma T, Yoshikawa M, Nakamura A, Kishida H (2016) Segmentation of conducting domains in PEDOT:PSS films induced by an additive for conductivity enhancement. Appl Phys Express 9:051601

    Google Scholar 

  39. Unuma T, Kobayashi O, Hamdany IFA, Kumar V, Saarinen JJ (2019) Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films. Cellulose 26:3247–3253

    CAS  Google Scholar 

  40. Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ (2015) Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin films. Nanoscale Res Lett 10:386

    PubMed  PubMed Central  Google Scholar 

  41. Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys Rev B 76:125408

    Google Scholar 

  42. Xie WQ, Yu KX, Gong YX (2019) Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose 26:2363–2373

    CAS  Google Scholar 

  43. Zhou Y, Fuentes-Hernandez C, Khan TM, Liu J-C, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T.U., O.K., and S.K. thank Prof. Kunihiko Tanaka at Nagaoka University of Technology for letting them use the UV/Vis/NIR spectrophotometer in his laboratory. This work was partly supported by JSPS KAKENHI Grant Number JP19K21966. J.J.S. acknowledges the Faculty of Science and Forestry at the University of Eastern Finland for the financial support (Grant No. 579/2017), and the Academy of Finland Photonics Research and Innovation (PREIN) Flagship Programme (Grant No. 320 166).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeya Unuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unuma, T., Kobayashi, O., Kotaka, S. et al. Terahertz complex conductivity of cellulose nanocrystal based composite films controlled with PEDOT:PSS blending ratio. Cellulose 27, 10019–10027 (2020). https://doi.org/10.1007/s10570-020-03464-4

Download citation

Keywords

  • Cellulose nanocrystals
  • Conducting polymers
  • Composite films
  • Terahertz spectroscopy
  • Charge transport