Skip to main content
Log in

Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2020

This article has been updated

Abstract

The most common reverse osmosis (RO) membranes that achieved economic water desalination applications are made of cellulose acetate (CA). Cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) have been blended with CA as innovative combinations to produce RO membranes through phase inversion technique. The relation between membranes compositions, structure, morphology, hydrophilicity and applicability were examined. Scanning electron microscope and Fourier transform infrared were used to evaluate the microstructure of these membranes. Hydrophilicity, strength, salt rejection and flow permeates were tested using a cross-flow reverse osmosis system and contact angle calculations. The contact angle measurements showed an increase from 56° for CA membrane to 71° for CAP membrane and 74° for CAB membrane. The hydro-phobicity of such membranes increased as CAP and CAB loadings increased. The salt rejection of pristine RO membranes increased from 93.2% with permeate of 1.4 L/m2 h for CA membrane to 96.8% with permeate of 1.07 L/m2 h for CAB membrane and 97.8% with permeate of 18.62 L/m2hr for CAP membrane. The salt rejection of supported membranes onto a nonwoven polyester fabric decreased from 92.8% with permeate of 3.78 L/m2 h for CA/0.5 wt% CAP to 91.4% with permeate of 6.05 L/m2  h for CA/0.5 wt% CAB and 88.5% with permeate of 5.84 L/m2  h for CA/0.1 wt% CAP/0.1 wt% CAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Change history

  • 02 November 2020

    In the original publication, the author name “Shaker M. Ebrahim” was mistakenly omitted in the author group. The correct author group was provided in this correction.

References

  • Abdellah Ali SF (2020) Performance of cellulose acetate propionate in polycaprolactone and starch composites: biodegradation and water resistance properties. Biointerface Res Appl Chem 10:5382–5286

    Article  Google Scholar 

  • Ahmad A et al (2015) Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 355:1–10

    Article  CAS  Google Scholar 

  • Aprilia NAS, Fauzi F, Azmi N, Najwan N, Amin A (2018) Performance of cellulose acetate membrane with different additives for palm oil mill effluent (POME) liquid waste treatment. IOP Conf Ser Mater Sci Eng 334:1–7

    Article  Google Scholar 

  • Baek Y, Kang J, Theato P, Yoon J (2012) Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: a comparative study. Desalination 303:23–28

    Article  CAS  Google Scholar 

  • Brown A, Matlock MD (2011) A Review of Water Scarcity Indices and Methodologies. Sustain, Consort., p 19

    Google Scholar 

  • Dantas PA, Botaro VR (2012) synthesis and characterization of a new cellulose acetate-propionate gel: crosslinking density determination. Open J Polym Chem 2:144–151

    Article  CAS  Google Scholar 

  • Dias CR, Rosa MJ, De Pinho MN (1998) Structure of water in asymmetric cellulose ester membranes - An ATR-FTIR study. J Memb Sci 138:259–267

    Article  CAS  Google Scholar 

  • Duarte AP, Bordado JC, Cidade MT (2007) Cellulose acetate reverse osmosis membranes: Optimization of preparation parameters. J Appl Polym Sci 103:134–139

    Article  CAS  Google Scholar 

  • Elkony Y, Mansour ES, Elhusseiny A, Hassan H, Ebrahim S (2020) Novel grafted/crosslinked cellulose acetate membrane with N-isopropylacrylamide/N, N-methylenebisacrylamide for water desalination. Sci Rep 10:1–3

    Article  Google Scholar 

  • Fane YJAG, Wang R (2011) Membrane and Desalination Technologies. Sprtinger, Berlin

  • Fontananova E, Jansen JC, Cristiano A, Curcio E, Drioli E (2006) Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192:190–197

    Article  CAS  Google Scholar 

  • Guiomar AJ, Evans SD, Guthrie J (2002) Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection. Cellulose 8(4):1–5

    Google Scholar 

  • Han B, Liang S, Wang B, Zheng J, Xie X, Xiao K, Huang X (2019) Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Coll Surf A: Physicochem Eng Asp 562:370–376

    Article  CAS  Google Scholar 

  • Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog energy Combust Sci 31:242–281

    Article  CAS  Google Scholar 

  • Kim IC, Lee KH, Tak TM (2001) Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane. J Memb Sci 183(2001):235–247

    Article  CAS  Google Scholar 

  • Liu F, Zhang G, Meng Q, Zhang H (2008) Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chinese J Chem Eng 16:441–445

    Article  Google Scholar 

  • Marques MS, Zepon KM, Petronilho FC, Soldi V, Kanis LA (2017) Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application. Mater Sci Eng C 76:365–373

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

    Article  Google Scholar 

  • Mendes G, Faria M, Carvalho A, Gonçalves MC, de Pinho MN (2018) Structure of water in hybrid cellulose acetate-silica ultrafiltration membranes and permeation properties. Carbohyd Polym 189:342–351

    Article  CAS  Google Scholar 

  • Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781

    Article  CAS  Google Scholar 

  • Qu P, Tang H, Gao Y, Zhang LP, Wang S (2010) Polyethersulfone composite membrane blended With cellulose fibrils. BioResources 5:2323–2336

    CAS  Google Scholar 

  • Sabde AD, Trivedi MK, Ramachandhran V, Hanra MS, Misra BM (1997) Casting and characterization of cellulose acetate butyrate based UF membranes. Desalination 114:223–232

    Article  CAS  Google Scholar 

  • Saljoughi E, Mohammadi T (2009) Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: Preparation, morphology and performance. Desalination 249:850–854

    Article  CAS  Google Scholar 

  • Savenije HHG (2000) Water scarcity indicators; the deception of the numbers. Phys Chem Earth Part B Hydrol Ocean At 25:199–204

    Article  Google Scholar 

  • Semiat R, City T (2000) Desalination : Present and Future. Water Int 25:54–65

    Article  CAS  Google Scholar 

  • Stamatialis DF, Dias CR, De Pinho MN (2000) Structure and permeation properties of cellulose esters asymmetric membranes. Biomacromol 1:564–570

    Article  CAS  Google Scholar 

  • Taniguchi Y, Horigome S (1975) The states of water in cellulose acetate membranes. J Appl Polym Sci 19:2743–2748

    Article  Google Scholar 

  • D Uri 1997 Effects of molecular weight polydispersity and solution viscosity of cellulose acetate butyrate on properties and release characteristics of ascorbyl

  • Vaithiyalingam S, Nutan M, Reddy I, Khan M (2002) Preparation and characterization of a customized cellulose acetate butyrate dispersion for controlled drug delivery. J Pharm Sci 91:1512–1522

    Article  CAS  Google Scholar 

  • Wilf M (2008) Membrane Types and Factors Affecting Membrane Performance. Stanford University, vol 1, 92 pp

  • Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. J Membr Sci Technol 8:1–20

    Article  Google Scholar 

  • Zhang W, Zhong L, Wang T, Jiang Z, Gao X, Zhang L (2018) Surface modification of cellulose nanofibers and their effects on the morphology and properties of polysulfone membranes. IOP Conf Ser Mater Sci Eng 397:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah F. Abdellah Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellah Ali, S.F., William, L.A. & Fadl, E.A. Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications. Cellulose 27, 9525–9543 (2020). https://doi.org/10.1007/s10570-020-03434-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03434-w

Keywords

Navigation