Skip to main content

Advertisement

Log in

Structural and functional characterization of bacterial cellulose from Enterobacter hormaechei subsp. steigerwaltii strain ZKE7

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The present investigation reports, the bacterial cellulose (BC) a high-purity polymer produced from isolated strain ZKE7. BC production was optimized by Plackett–Burman and central composite designs yielding 18.5 g/l BC with a 4.5-fold enhancement. BC composites functionalized with antibiotics, BC-gelatin hydrogel, BC-Chitosan hydrogel and BC silver nanoparticle composites were developed and evaluated for water retention capability, moisture content and protein adsorption. The drug release behavior of the composites was consistent for controlled drug delivery. Composites were assessed for functional characteristic such as antimicrobial properties. BC composites functionalized with Neotericine exhibited antifungal activity against Candida albicans. Other composites showed pronounced antibacterial properties against Escherichia coli, Bacillus subtilis and Micrococcus luteus. Structural and thermal characterization of BC composites was carried out by FTIR, SEM with energy dispersive X-ray analysis, TGA and differential scanning calorimetry analysis. The results reveal high BC production with excellent properties that can be employed in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelraof M, Hasanin MS, El-Saied H (2019) Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr Polym 211:75–83. https://doi.org/10.1016/j.carbpol.2019.01.095

    Article  CAS  PubMed  Google Scholar 

  • An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM (2017) Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci 18:2236

    Article  Google Scholar 

  • Aytekin AÖ, Demirbağ DD, Bayrakdar T (2016) The statistical optimization of bacterial cellulose production via semi-continuous operation mode. J Ind Eng Chem 37:243–250

    Article  CAS  Google Scholar 

  • Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:7

    Article  Google Scholar 

  • Bagewadi ZK, Mulla SI, Ninnekar HZ (2016a) Purification and characterization of endo β-1,4-d-glucanase From Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghum bagasse. 3 Biotech 6:101

    Article  Google Scholar 

  • Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ (2016b) Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium–alginate beads. 3 Biotech 6:164

    Article  Google Scholar 

  • Bagewadi ZK, Mulla SI, Ninnekar HZ (2017) Optimization of laccase production and its application in delignification of biomass. Int J Recycl Org Waste Agric 6:351–365

    Article  Google Scholar 

  • Bagewadi ZK, Mulla SI, Ninnekar HZ (2018) Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. J Environ Chem Eng 6:4828–4839

    Article  CAS  Google Scholar 

  • Bagewadi ZK, Bhavikatti JS, Muddapur UM, Yaraguppi DA, Mulla SI (2020) Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydr Res 491:107979. https://doi.org/10.1016/j.carres.2020.107979

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Vadanan SV, Lim S (2019) Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr Polym 207:684–693. https://doi.org/10.1016/j.carbpol.2018.10.085

    Article  CAS  PubMed  Google Scholar 

  • Buldum G, Bismarck A, Mantalaris A (2018) Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioproc Biosyst Eng 41(2):265–279. https://doi.org/10.1007/s00449-017-1864-1

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Alvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037. https://doi.org/10.1016/j.carbpol.2012.03.045

    Article  CAS  PubMed  Google Scholar 

  • Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym 94(1):12–16. https://doi.org/10.1016/j.carbpol.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  • Dorame-Miranda RF, Gamez-Meza N, Medina-Juarez LA, Ezquerra-Brauer JM, Ovando-Martínez M, Lizardi-Mendoza J (2019) Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr Polym 207:91–99

    Article  CAS  Google Scholar 

  • Du R, Wang Y, Zhao F, Qiao X, Song Q, Li S, Kim RC, Pan L, Han Y, Xiao H, Zhou Z (2018) Production, optimization and partial characterization of bacterial cellulose from Gluconacetobacter xylinus TJU-D2. Waste Biomass Valori 11:1681–1690. https://doi.org/10.1007/s12649-018-0440-5

    Article  CAS  Google Scholar 

  • Gayathri G, Srinikethan G (2018) Crude glycerol as a cost-effective carbon source for the production of cellulose by K. saccharivorans. Biocatal Agric Biotechnol 16:326–330

    Article  Google Scholar 

  • Gayathri G, Srinikethan G (2019) Bacterial Cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. Int J Biol Macromol 138:950–957

    Article  CAS  Google Scholar 

  • Gupta A, Keddie DJ, Kannappan V, Gibson H, Khalil IR, Kowalczuk M, Martin C, Shuai X, Radecka I (2019a) Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. Eur Polym J 118:437–450

    Article  CAS  Google Scholar 

  • Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I (2019b) The production and application of hydrogels for wound management: a review. Eur Polym J 111:134–151

    Article  CAS  Google Scholar 

  • Han YH, Mao HL, Wang SS, Deng JC, Chen DL, Li M (2020) Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium. Cellulose 27:1255–1272

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352. https://doi.org/10.1042/bj0580345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isfahani FM, Tahmourespour A, Hoodaji M, Ataabadi M, Mohammadi A (2018) Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions. J Clean Prod 185:922–928

    Article  Google Scholar 

  • Jahan F, Kumar V, Saxena RK (2018) Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol 250:922–926

    Article  CAS  Google Scholar 

  • Kim SS, Lee SY, Park KJ, Park SM, An HJ, Hyun JM, Choi YH (2017) Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi J Biol Sci 24(2):314–319. https://doi.org/10.1016/j.sjbs.2015.09.031

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma DK, Bansal V, Mehta D, Sangwan RS, Yadav SK (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433. https://doi.org/10.1016/j.biortech.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  • Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC (2016) Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym 151:827–833. https://doi.org/10.1016/j.carbpol.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Cao Y, Qu R, Gao G, Chen S, Zhang Y, Wu M, Ma T, Li G (2019) Production of bacterial cellulose hydrogels with tailored crystallinity from Enterobacter sp. FY-07 by the controlled expression of colanic acid synthetic genes. Carbohydr Polym 207:563–570. https://doi.org/10.1016/j.carbpol.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Lu T, Gao H, Liao B, Wu J, Zhang W, Huang J, Liu M, Huang J, Chang Z, Jin M, Yi Z, Jiang D (2020) Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr Polym 232:115788. https://doi.org/10.1016/j.carbpol.2019.115788

    Article  CAS  PubMed  Google Scholar 

  • Machado RTA, Meneguin AB, Sábio RM, Franco DF, Antonio SG, Gutierrez J, Tercjak A, Berretta AA, Ribeiro SJL, Lazarini SC, Lustri WR, Barud HS (2018) Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind Crop Prod 122:637–646

    Article  CAS  Google Scholar 

  • Mohamed SS, Amer SK, Selim MS, Rifaat HM (2018) Characterization and applications of exopolysaccharide produced by 5 marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egypt J Basic Appl Sci 5:204–209

    Google Scholar 

  • Mulla SI, Sun Q, Hu A, Wang Y, Ashfaq M, Eqani SA, Yu CP (2016a) Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS ONE 11(10):e0165013. https://doi.org/10.1371/journal.pone.0165013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016b) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965. https://doi.org/10.1038/srep21965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulla SI, Hu A, Sun Q, Li J, Suanon F, Ashfaq M, Yu CP (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102. https://doi.org/10.1016/j.jenvman.2017.10.029

    Article  CAS  Google Scholar 

  • Numata Y, Kono H, Mori A, Kishimoto R, Tajima K (2019) Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus. Food Hydrocoll 92:233–239

    Article  CAS  Google Scholar 

  • Pandey M, Amin MCIM, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci. https://doi.org/10.1155/2013/905471

    Article  Google Scholar 

  • Parte FGB, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC (2020) Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40:397–414. https://doi.org/10.1080/07388551.2020.1713721

    Article  CAS  Google Scholar 

  • Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    Article  CAS  Google Scholar 

  • Qiao N, Fan X, Zhang X, Shi Y, Wang L, Yu D (2019) Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids 97:105185

    Article  CAS  Google Scholar 

  • Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amiri S (2020) Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J Food Sci Technol 57(7):2524–2533. https://doi.org/10.1007/s13197-020-04289-6

    Article  CAS  PubMed  Google Scholar 

  • Salari M, Khiabani MS, Mokarram RR, Ghanbarzadeh B, Kafil HS (2019) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84:414–423

    Article  Google Scholar 

  • Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120. https://doi.org/10.1016/j.carbpol.2016.02.065

    Article  CAS  PubMed  Google Scholar 

  • Singh O, Panesar PS, Chopra HK (2017) Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate Gluconacetobacter xylinus C18. Food Sci Biotechnol 26:1019–1028

    Article  CAS  Google Scholar 

  • Soemphol W, Hongsachart P, Tanamool V (2018) Production and characterization of bacterial cellulose produced from agricultural by-product by Gluconacetobacter strains. Mater Today Proc 5:11159–11168

    Article  CAS  Google Scholar 

  • Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91. https://doi.org/10.1016/j.btre.2017.07.002

    Article  CAS  Google Scholar 

  • Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018a) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68

    Article  CAS  Google Scholar 

  • Volova TG, Prudnikova SV, Sukovatyi AG, Shishatskaya EI (2018b) Production andproperties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl Microbiol Biot 102:7417–7428. https://doi.org/10.1007/s00253-018-9198-8

    Article  CAS  Google Scholar 

  • Wahid F, Hu XH, Chu LQ, Jia SR, Xie YY, Zhong C (2019) Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol 122:380–387. https://doi.org/10.1016/j.ijbiomac.2018.10.105

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Chen W, Hu J, Tian D, Shen F, Zeng Y, Yang G, Zhang Y, Deng S (2019) Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefiner. Sci Total Environ 695:133898

    Article  CAS  Google Scholar 

  • Yang HJ, Lee T, Kim JR, Choi YE, Park C (2019) Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. J Ind Eng Chem 75:158–163

    Article  Google Scholar 

  • Ye J, Zheng S, Zhang Z, Yang F, Ma K, Feng Y, Zheng J, Mao D, Yang X (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol 274:518–524

    Article  CAS  Google Scholar 

  • Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513

    Article  CAS  Google Scholar 

  • Zywicka A, Junka AF, Szymczyk P, Chodaczek G, Grzesiak J, Sedghizadeh PP, Fijalkowski K (2018) Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydr Polym 199:294–303. https://doi.org/10.1016/j.carbpol.2018.06.126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author who is the corresponding author thank KLE Technological University, Hubballi for providing funding to carry out the present research work through Research Group (RG) projects.

Author information

Authors and Affiliations

Authors

Contributions

ZB and VD have designed the experimental work, executed all the experiments and carried out all the data analysis. ZB, VD, SIM, SD, UM, DY, VDR, JB and SM were involved in interpretation of data. ZB and VD have written the manuscript. All the authors have approved the contents of the manuscript.

Corresponding author

Correspondence to Zabin K. Bagewadi.

Ethics declarations

Conflict of interest

All the authors affirm that they have no argument of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagewadi, Z.K., Dsouza, V., Mulla, S.I. et al. Structural and functional characterization of bacterial cellulose from Enterobacter hormaechei subsp. steigerwaltii strain ZKE7. Cellulose 27, 9181–9199 (2020). https://doi.org/10.1007/s10570-020-03412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03412-2

Keywords

Navigation