Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals

Abstract

Lignin-containing cellulose nanocrystals (LCNCs) were produced from old newspapers using the sulfuric acid hydrolysis process, and the product was used in reinforcing polyvinyl alcohol (PVA) based hydrogel. The lignin content of LCNCs was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS), and LCNCs had 8–19 wt% lignin located on their surfaces. The transmission electron microscopy (TEM) confirmed the presence of lignin on LCNCs as small globular-like particles/patches. The increase in the lignin content of LCNCs increased the thermal stability and hydrophobicity while decreasing the crystallinity of LCNCs. Moreover, the effect of LCNC loading (0.1–1 wt%) on the mechanical strength, rheological properties, swelling behavior, morphology, and thermal stability of PVA-based hydrogel was further elucidated. The incorporation of LCNCs in hydrogel at a low dosage improved the swelling behavior of hydrogel. The lignin present on the surface of LCNCs led to enhanced viscoelasticity, increased compressive strength, and improved thermal stability of hydrogel. In addition, the pore size of the hydrogel dropped more significantly (4.26–1.52 μm) with the use of LCNCs containing more lignin. At a low dosage of 0.1 wt%, all studied properties of hydrogels were improved using the LCNC with high lignin content. This study provides a new prospect for the use of lignin-containing CNCs for the production of a high-performance hydrogel.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

ONP:

Old newspaper

DP:

Deinked pulp

DPH:

Deinked pulp with high lignin content

DPL:

Deinked pulp with low lignin content

LCNCs:

Lignin-containing cellulose nanocrystals

LCNC-DP:

LCNC prepared from DP

LCNC-DPH:

LCNC prepared from DPH

LCNC-DPL:

LCNC prepared from DPL

PVA:

Polyvinyl alcohol

PVA-LCNC:

LCNC reinforced PVA hydrogel

PVA-LCNC-DP:

LCNC-DP reinforced PVA hydrogel

PVA-LCNC-DPH:

LCNC-DPH reinforced PVA hydrogel

PVA-LCNC-DPL:

LCNC-DPL reinforced PVA hydrogel

References

  1. Abitbol T, Johnstone T, Quinn T, Gray D (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379

    CAS  Google Scholar 

  2. Aloui H, Khwaldia K, Hamdi M, Fortunati E, Kenny JM, Buonocore GG, Lavorgna M (2016) Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng 4:794–800

    CAS  Google Scholar 

  3. Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465

    CAS  Google Scholar 

  4. Bi Y, Qi G, Zhao S, Yan J, Jin Y, Yan X (2007) The application of FQA fiber quality analyzer. China Pulp & Paper Ind 9

  5. Bian H, Chen L, Dai H, Zhu J (2017a) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bian H, Chen L, Gleisner R, Dai H, Zhu JY (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 & #xB0;C using a recyclable acid hydrotrope. Green Chem 19:3370–3379

    CAS  Google Scholar 

  7. Bian H, Jiao L, Wang R, Wang X, Zhu W, Dai H (2018a) Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel. Eur Polym J 107:267–274

    CAS  Google Scholar 

  8. Bian H, Wei L, Lin C, Ma Q, Dai H, Zhu JY (2018b) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828

    CAS  Google Scholar 

  9. Bostan L, Trunfio-Sfarghiu A, Verestiuc L, Popa M, Munteanu F, Rieu J, Berthier Y (2012) Mechanical and tribological properties of poly(hydroxyethyl methacrylate) hydrogels as articular cartilage substitutes. Trib Int 46:215–224

    CAS  Google Scholar 

  10. Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyroly 104:531–539

    CAS  Google Scholar 

  11. Bui NQ, Fongarland P, Rataboul F, Dartiguelongue C, Charon N, Vallée C, Essayem N (2015) FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: application to SC ethanol liquefaction of pine wood. Fuel Process Technol 134:378–386

    CAS  Google Scholar 

  12. Butylina S, Geng S, Oksman K (2016) Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. Eur Polym J 81:386–396

    CAS  Google Scholar 

  13. Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wågberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromol 14:503–511

    CAS  Google Scholar 

  14. Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromolec Chem Phys 209:1266–1273

    CAS  Google Scholar 

  15. Deller RC, Vatish M, Mitchell DA, Gibson MI (2014) Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat Commun 5:3244

    PubMed  Google Scholar 

  16. Diop C, Lavoie J (2017) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled tetra pak aseptic multilayered food packaging wastes. Waste Biomass Valorization 8:41–56

    CAS  Google Scholar 

  17. Domínguez JC, Oliet M, Alonso MV, Gilarranz MA, Rodríguez F (2008) Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind Crops Prod 27:150–156

    Google Scholar 

  18. Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407

    CAS  Google Scholar 

  19. Ferguson LD (1992) Deinking chemistry: part 1. Tappi J 75:75

    CAS  Google Scholar 

  20. Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    CAS  Google Scholar 

  21. Guan Y, Zhang B, Bian J, Peng F, Sun RC (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose 21:1709–1721

    CAS  Google Scholar 

  22. Han J, Lei T, Wu Q (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20:2947–2958

    CAS  Google Scholar 

  23. Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316

    CAS  PubMed  Google Scholar 

  24. Hassan CM, Peppas NA (2000) Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules 33:2472–2479

    CAS  Google Scholar 

  25. Heikkinen S, Toikka MM, Karhunen PT, Kilpeläinen IA (2003) Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. J Am Chem Soc 125:4362–4367

    CAS  PubMed  Google Scholar 

  26. Huang SQ, Su SY, Gan HB, Wu LJ, Lin CH, Xu DY, Zhou HF, Lin XL, Qin YL (2019) Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohydr Polym 223:115080

    CAS  PubMed  Google Scholar 

  27. Jahan M, Saeed A, He Z, Ni YH (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    CAS  Google Scholar 

  28. Jiang C, Ma J (2000) Deinking of waste paper. Flotation En Dei Technol 1–2

  29. Jiang W, Shen P, Gu J (2019) Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels. J Polym Eng 40:67–74

    Google Scholar 

  30. Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Bio Macro 106:1288–1296

    CAS  Google Scholar 

  31. Kim T, An D, Oh S, Kang M, Song H, Lee J (2015) Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 40:51–60

    CAS  PubMed  Google Scholar 

  32. Leung A, Hrapovic S, Lam E, Liu Y, Male K, Mahmoud K, Luong J (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    CAS  PubMed  Google Scholar 

  33. Li L, Yan B, Yang J, Chen L, Zeng H (2015) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater 27:1294–1299

    CAS  PubMed  Google Scholar 

  34. Liang L, Bhagia S, Li M, Huang C, Ragauskas AJ (2020) Cross-linked nanocellulosic materials and their applications. Chemsuschem 13:78–87

    CAS  PubMed  Google Scholar 

  35. Liu D, Zhong T, Chang P, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536

    CAS  PubMed  Google Scholar 

  36. Liu WJ, Jiang H, Yu HQ (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17:4888–4907

    CAS  Google Scholar 

  37. Meyers J, Nanko H (2005) Effects of fines on the fiber length and coarseness values measured by the fiber quality analyzer (FQA). In: TAPPI practical pap conference, Milwaukee WI, USA

  38. Miyata Takashi (2010) Preparation of smart soft materials using molecular complexes. Polym J 42:277–289

    CAS  Google Scholar 

  39. Nair SS, Sharma S, Pu Y, Sun Q, Pan S, Zhu JY, Ragauskas AJ (2014) High shear homogenization of lignin to nanolignin and thermal stability of Nanolignin-Polyvinyl alcohol blends. Chemsuschem 7:3513–3520

    CAS  PubMed  Google Scholar 

  40. Nedjma S, Djidjelli H, Boukerrou A, Benachour D, Chibani N (2013) Deinked and acetylated fiber of newspapers. J Appl Polym Sci 127:4795–4801

    CAS  Google Scholar 

  41. Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interf Sci 19:409–416

    CAS  Google Scholar 

  42. Păduraru OM, Ciolacu D, Darie RN, Vasile C (2012) Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater Sci Eng 32:2508–2515

    Google Scholar 

  43. Peng N, Hu D, Zeng J, Li Y, Liang L, Chang C (2016) Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224

    CAS  Google Scholar 

  44. Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Controll Release 16:305–310

    CAS  Google Scholar 

  45. Pirani S, Hashaikeh R (2013) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93:357–363

    CAS  PubMed  Google Scholar 

  46. Rahmani H, Ashori A, Varnaseri N (2016) Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Adv Technol 27:805–811

    CAS  Google Scholar 

  47. Rojo E, Peresin M, Sampson W, Hoeger I, Vartiainen J, Laine J, Rojas O (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866

    CAS  Google Scholar 

  48. Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    CAS  PubMed  Google Scholar 

  49. Savadekar N, Mhaske S (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151

    CAS  PubMed  Google Scholar 

  50. Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    CAS  Google Scholar 

  51. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Tex Res J 29:786–794

    CAS  Google Scholar 

  52. Shin M, Spinks G, Shin S, Kim S, Kim S (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715

    CAS  Google Scholar 

  53. Shirsath S, Patil A, Patil R, Naik J, Gogate P, Sonawane S (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason-Sonochem 20:914–923

    CAS  PubMed  Google Scholar 

  54. Si Y, Wang L, Wang X, Tang N, Yu J, Ding B (2017) Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv Mater 29:1700339

    Google Scholar 

  55. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Lab Analy Pro Report NREL/TP-510-42618

  56. Song J, Rojas OJ (2013) Paper Chemistry: approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238

    CAS  Google Scholar 

  57. Sood N, Nagpal S, Nanda S, Bhardwaj A, Mehta A (2013) Withdrawn: an overview on stimuli responsive hydrogels as drug delivery system. J Controll Release

  58. Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346

    CAS  Google Scholar 

  59. Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Composit Part A Appl Sci Manuf 88:226–233

    CAS  Google Scholar 

  60. Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    CAS  PubMed  Google Scholar 

  61. Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-Da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    CAS  PubMed  Google Scholar 

  62. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MM (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A: Phys Eng Asp 296:76–85

    CAS  Google Scholar 

  63. Vänskä E, Vihelä T, Peresin MS, Vartiainen J, Hummel M, Vuorinen T (2016) Residual lignin inhibits thermal degradation of cellulosic fiber sheets. Cellulose 23:199–212

    Google Scholar 

  64. Wang L, Wang M (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830–2837

    CAS  Google Scholar 

  65. Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    CAS  Google Scholar 

  66. Wu D, Gao Y, Li W, Zheng X, Chen Y, Wang Q (2016) Selective adsorption of La3 + using a tough alginate-clay-poly (N-isopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles. ACS Sustain Chem Eng 4:6732–6743

    CAS  Google Scholar 

  67. Xia J, Liu Z, Chen Y, Cao Y, Wang Z (2020) Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose 27:879–894

    CAS  Google Scholar 

  68. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401–408

    CAS  Google Scholar 

  69. Yang J, Wang F, Tan T (2009) Controlling degradation and physical properties of chemical sand fixing agent-poly (aspartic acid) by crosslinking density and composites. J Appl Polym Sci 111:1557–1563

    CAS  Google Scholar 

  70. Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly (3-methyl-3-oxetanemethanol). Cellulose 18:1611–1621

    CAS  Google Scholar 

  71. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601

    CAS  Google Scholar 

  72. Zerpa A, Pakzad L, Fatehi P (2018) Hardwood kraft lignin-based hydrogels: production and performance. ACS Omega 3(7):8233–8242

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang X, Zhang Y (2016) Reinforcement effect of poly (butylene succinate)(PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Science Foundation of China (31670584, 31971602), Project of Excellent Young Scientist Fund by Shandong Provincial Natural Science Foundation (ZR2018JL015), Outstanding Youth Innovation Team Project of Shandong Provincial University (2019KJC014).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Liu or Qiang Wang or Pedram Fatehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, S., Wang, Q. et al. Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals. Cellulose 27, 8725–8743 (2020). https://doi.org/10.1007/s10570-020-03396-z

Download citation

Keywords

  • Cellulose nanocrystal
  • Lignin
  • Newspaper
  • Hydrogel
  • Polyvinyl alcohol (PVA)
  • Rheology
  • Mechanical properties
  • Thermal stability