Skip to main content

Synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose

Abstract

Due to the fact that natural cellulose cannot be melted, it is still challenging to process this biopolymer via thermoplastic processing methods. Herein, polycaprolactone diol was grafted onto regenerated cellulose (RC) via hydroxyl/isocyanate chemistry in dimethyl sulfoxide to endow cellulose with thermoplasticity. By adjusting the reaction parameters including the feeding ratios of reactants and reaction time, several homogeneous cellulose grafted polyurethanes (RC-g-PU) with the degree of substitution (DS) ranging from 0.49 to 1.48 and degree of polymerization ranging from 1.84 to 3.3 were synthesized. The thermoplasticity of the obtained RC-g-PU was well characterized by differential scanning calorimetry and optical microscope. The results revealed that the prepared RC-g-PU with DS values ranging from 1.01 to 1.48 can be melted at above 168.4 °C because PU side chains can serve as internal plasticizers and prevent the restacking of cellulose chains. Eventually, the synthesized thermoplastic RC-g-PU can be processed into transparent films by hot-pressing at 170 °C. Therefore, this research constructs a melt-processable cellulose derivative by a simple and engineering method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Photo credit: logotype of Sichuan University, permission granted

References

  1. Abushammala H (2019) On the para/ortho reactivity of isocyanate groups during the carbamation of cellulose nanocrystals using 2,4-toluene diisocyanate. Polymers 11:1164. https://doi.org/10.3390/polym11071164

    CAS  Article  PubMed Central  Google Scholar 

  2. Abushammala H, Mao J (2019) A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules 24:2782. https://doi.org/10.3390/molecules24152782

    Article  PubMed Central  Google Scholar 

  3. Bondeson D, Syre P, Niska KO (2007) All cellulose nanocomposites produced by extrusion. J Biobased Mater Bioenergy 1:367–371. https://doi.org/10.1166/jbmb.2007.011

    Article  Google Scholar 

  4. Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane–cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145. https://doi.org/10.1039/b910517d

    CAS  Article  Google Scholar 

  5. Chen H et al (2018a) Efficient transesterification reaction of cellulose with vinyl esters in DBU/DMSO/CO2 solvent system at low temperature. Cellulose 25:6935–6945. https://doi.org/10.1007/s10570-018-2078-7

    CAS  Article  Google Scholar 

  6. Chen Z, Zhang J, Xiao P, Tian W, Zhang J (2018b) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939. https://doi.org/10.1021/acssuschemeng.7b04466

    CAS  Article  Google Scholar 

  7. Chien YC, Chuang WT, Jeng US, Hsu SH (2017) Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl Mater Interfaces 9:5419–5429. https://doi.org/10.1021/acsami.6b11993

    CAS  Article  PubMed  Google Scholar 

  8. Cielecka I, Szustak M, Kalinowska H, Gendaszewska-Darmach E, Ryngajłło M, Maniukiewicz W, Bielecki S (2019) Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26:5409–5426. https://doi.org/10.1007/s10570-019-02501-1

    CAS  Article  Google Scholar 

  9. Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002. https://doi.org/10.1039/c8gc01189c

    CAS  Article  Google Scholar 

  10. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  11. Hanabusa H, Izgorodina EI, Suzuki S, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M (2018) Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chem 20:1412–1422. https://doi.org/10.1039/c7gc03603e

    CAS  Article  Google Scholar 

  12. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. https://doi.org/10.1023/A:1009272632367

    CAS  Article  Google Scholar 

  13. Jarvis M (2003) Cellulose stacks up. Nature 426:611. https://doi.org/10.1038/426611a

    CAS  Article  PubMed  Google Scholar 

  14. Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J (2019) Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat Commun 10:795. https://doi.org/10.1038/s41467-019-08675-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    CAS  Article  Google Scholar 

  16. Kontturi E, Laaksonen P, Linder MB, Nonappa Groschel AH, Rojas OJ, Ikkala O (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 30:e1703779. https://doi.org/10.1002/adma.201703779

    CAS  Article  PubMed  Google Scholar 

  17. Kostag M, Gericke M, Heinze T, El Seoud OA (2019) Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26:139–184. https://doi.org/10.1007/s10570-018-2198-0

    CAS  Article  Google Scholar 

  18. Kuga S, Wu M (2019) Mechanochemistry of cellulose. Cellulose 26:215–225. https://doi.org/10.1007/s10570-018-2197-1

    CAS  Article  Google Scholar 

  19. Laurichesse S, Huillet C, Avérous L (2014) Original polyols based on organosolv lignin and fatty acids: new bio-based building blocks for segmented polyurethane synthesis. Green Chem 16:3958–3970. https://doi.org/10.1039/C4GC00596A

    CAS  Article  Google Scholar 

  20. Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78:389–395. https://doi.org/10.1016/j.carbpol.2009.04.028

    CAS  Article  Google Scholar 

  21. Ling Z et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328. https://doi.org/10.1007/s10570-018-02230-x

    CAS  Article  Google Scholar 

  22. Luan Y, Wu J, Zhan M, Zhang J, Zhang J, He J (2013) “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(l-lactide) copolymers from unmodified cellulose. Cellulose 20:327–337. https://doi.org/10.1007/s10570-012-9818-x

    CAS  Article  Google Scholar 

  23. Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508. https://doi.org/10.1016/j.cis.2014.05.004

    CAS  Article  PubMed  Google Scholar 

  24. Onwukamike KN, Tassaing T, Grelier S, Grau E, Cramail H, Meier MAR (2017) Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization. ACS Sustain Chem Eng 6:1496–1503. https://doi.org/10.1021/acssuschemeng.7b04053

    CAS  Article  Google Scholar 

  25. Onwukamike KN, Grelier S, Grau E, Cramail H, Meier MAR (2018) Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU–CO2 switchable solvent. ACS Sustain Chem Eng 6:8826–8835. https://doi.org/10.1021/acssuschemeng.8b01186

    CAS  Article  Google Scholar 

  26. Onwukamike KN, Grelier S, Grau E, Cramail H, Meier MAR (2019a) Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustain Chem Eng 7:1826–1840. https://doi.org/10.1021/acssuschemeng.8b04990

    CAS  Article  Google Scholar 

  27. Onwukamike KN, Lapuyade L, Maillé L, Grelier S, Grau E, Cramail H, Meier MAR (2019b) Sustainable approach for cellulose aerogel preparation from the DBU–CO2 switchable solvent. ACS Sustain Chem Eng 7:3329–3338. https://doi.org/10.1021/acssuschemeng.8b05427

    CAS  Article  Google Scholar 

  28. Pena CA, Soto A, King AWT, Rodríguez H (2019) Improved reactivity of cellulose via its crystallinity reduction by nondissolving pretreatment with an ionic liquid. ACS Sustain Chem Eng 7:9164–9171. https://doi.org/10.1021/acssuschemeng.8b06357

    CAS  Article  Google Scholar 

  29. Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2:382–389. https://doi.org/10.1038/s41570-018-0050-6

    CAS  Article  Google Scholar 

  30. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947. https://doi.org/10.1039/c8na00238j

    CAS  Article  Google Scholar 

  31. Reyes G, Borghei M, King AWT, Lahti J, Rojas OJ (2019) Solvent welding and imprinting cellulose nanofiber films using ionic liquids. Biomacromol 20:502–514. https://doi.org/10.1021/acs.biomac.8b01554

    CAS  Article  Google Scholar 

  32. Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002

    CAS  Article  Google Scholar 

  33. Schroeter J, Felix F (2005) Melting cellulose. Cellulose 12:159–165. https://doi.org/10.1007/s10570-004-0344-3

    CAS  Article  Google Scholar 

  34. Sirviö JA (2019) Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J Mater Chem A 7:755–763. https://doi.org/10.1039/c8ta09959f

    CAS  Article  Google Scholar 

  35. Song L, Yang Y, Xie H, Liu E (2015) Cellulose dissolution and in situ grafting in a reversible system using an organocatalyst and carbon dioxide. Chemsuschem 8:3217–3221. https://doi.org/10.1002/cssc.201500378

    CAS  Article  PubMed  Google Scholar 

  36. Söyler Z, Meier MAR (2017) Sustainable functionalization of cellulose and starch with diallyl carbonate in ionic liquids. Green Chem 19:3899–3907. https://doi.org/10.1039/c7gc01978e

    CAS  Article  Google Scholar 

  37. Söyler Z, Onwukamike KN, Grelier S, Grau E, Cramail H, Meier MAR (2018) Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green Chem 20:214–224. https://doi.org/10.1039/c7gc02577g

    CAS  Article  Google Scholar 

  38. Tabaght FE et al (2020) Cellulose grafted aliphatic polyesters: synthesis, characterization and biodegradation under controlled conditions in a laboratory test system. J Mol Struct 1205:127582. https://doi.org/10.1016/j.molstruc.2019.127582

    CAS  Article  Google Scholar 

  39. Tanaka S, Iwata T, Iji M (2017) Long/short chain mixed cellulose esters: effects of long acyl chain structures on mechanical and thermal properties. ACS Sustain Chem Eng 5:1485–1493. https://doi.org/10.1021/acssuschemeng.6b02066

    CAS  Article  Google Scholar 

  40. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003

    CAS  Article  Google Scholar 

  41. Wu J, Bai J, Xue Z, Liao Y, Zhou X, Xie X (2014) Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose 22:89–99. https://doi.org/10.1007/s10570-014-0502-1

    CAS  Article  Google Scholar 

  42. Xu Q et al (2017) Organocatalytic cellulose dissolution and in situ grafting of ε-caprolactone via ROP in a reversible DBU/DMSO/CO2 system. ChemistrySelect 2:7128–7134. https://doi.org/10.1002/slct.201701639

    CAS  Article  Google Scholar 

  43. Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly(l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromol 10:2013–2018. https://doi.org/10.1021/bm900447u

    CAS  Article  Google Scholar 

  44. Yang Y, Xie H, Liu E (2014) Acylation of cellulose in reversible ionic liquids. Green Chem 16:3018–3023. https://doi.org/10.1039/c4gc00199k

    CAS  Article  Google Scholar 

  45. Yao X, Qi X, He Y, Tan D, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507. https://doi.org/10.1021/am4056694

    CAS  Article  PubMed  Google Scholar 

  46. Yi H et al (2019) Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv Funct Mater 29:1902720. https://doi.org/10.1002/adfm.201902720

    CAS  Article  Google Scholar 

  47. Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr Polym 87:2470–2476. https://doi.org/10.1016/j.carbpol.2011.11.019

    CAS  Article  Google Scholar 

  48. Zhao Y, Moser C, Henriksson G (2018) Transparent composites made from tunicate cellulose membranes and environmentally friendly polyester. Chemsuschem 11:1728–1735. https://doi.org/10.1002/cssc.201800627

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grants: 51873128 and 51721091).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming-Bo Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7379 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, DF., Tan, H., Li, ML. et al. Synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose. Cellulose 27, 8667–8679 (2020). https://doi.org/10.1007/s10570-020-03389-y

Download citation

Keywords

  • Regenerated cellulose
  • Isocyanate
  • Polycaprolactone diol
  • Grafting reaction
  • Melting-processing