Decellularization and characterization of leek: a potential cellulose-based biomaterial

Abstract

Cellulose, which is easily attainable in nature, has been studied due to its biocompatibility, low cytotoxicity, adjustable biomechanical properties and cost effectiveness as a biomaterial. Recently, plant-derived cellulose-based biomaterials were given attention for numerous applications including bone, cartilage and cardiac tissue engineering. In this study, leek (Allium porrum) was chosen as a plant tissue model for the fabrication of a potential biomaterial due to its structural morphology (interconnected and elongated channel like structural morphology). Leek tissues were decellularized by a detergent solution. The degree of residual cell content was evaluated by DNA and protein quantification as well as immunostaining. Chemical and mechanical properties were tested for both native and decellularized leek samples in order to investigate the effect of decellularization on the structure. Swelling, degradation and protein adsorption behavior of decellularized leek samples were also studied. In order to enhance cell adhesion, decellularized leek samples were modified with 3-aminopropyltriethoxysilane, octadecyltrichlorosilane and coated with graphene oxide prior to cell seeding. SH-SY5Y human neuroblastoma cells were used for mammalian cell culture studies. MTT cell viability assay and SEM imaging were performed to observe the cell adhesion and morphology. Decellularized leek tissues are expected to be cellulose based biomaterial for candidate biomedical applications both in vitro and in vivo in future studies.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The plant cell wall. In: Molecular biology of cell, 4th edn. Garland Science, New York

  2. Antons J, Marascio MG, Aeberhard P, Weissenberger G, Hirt-Burri N, Applegate LA, Bourban PE, Pioletti DP (2018) Decellularised tissues obtained by a CO2-philic detergent and supercritical CO2. Eur Cells Mater 36:81–95. https://doi.org/10.22203/eCM.v036a07

    CAS  Article  Google Scholar 

  3. Argyropoulos D, Menachem S (1997) Lignin. In: Eriksson K (ed) Advances in biochemical engineering biotechnology, vol 57. Springer, New York, pp 127–158

    Google Scholar 

  4. Badylak SF, Brown BN, Gilbert TW (2013) Tissue engineering with decellularized tissues. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials, 3rd edn. Elsevier, pp 1316–1331. https://doi.org/10.1016/B978-0-08-087780-8.00140-6

  5. Badylak SF, Taylor D, Uygun K (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. J Biomed Mater Res Part A 103(4):1498–1508. https://doi.org/10.1002/jbm.a.35291

    CAS  Article  Google Scholar 

  6. Bergs M, Völkering G, Kraska T, Pude R, Do XT, Kusch P, Monakhova Y, Konow C, Schulze M (2019) Miscanthus × giganteus stem versus leaf-derived lignins differing in monolignol ratio and linkage. Int J Mol Sci 20(5):1200. https://doi.org/10.3390/ijms20051200

    CAS  Article  PubMed Central  Google Scholar 

  7. Cai Z, Kim J (2010) Preparation and characterization of novel bacterial cellulose/gelatin scaffold for tissue regeneration using bacterial cellulose hydrogel. J Nanotechnol Eng Med 1(021002):1–6. https://doi.org/10.1115/1.4000858

    CAS  Article  Google Scholar 

  8. Callister WDJ, Rethwisch DG (2012) Fundamentals of materials science and engineering: an integrated approach, 4th edn. Wiley, New York

    Google Scholar 

  9. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice, chapter 2, Springer, pp 25–71. https://doi.org/10.1007/978-94-007-6898-7

  10. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose structure and characterization. Cell Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  11. Cooper G (2000) Cell walls and the extracellular matrix. In: The cell: a molecular approach, 2nd edn. Sinauer Associates

  12. Courtenay JC, Sharma RI, Scott JL (2018) Recent advances in modified cellulose for tissue culture applications. Molecules 23(3):654. https://doi.org/10.3390/molecules23030654

    CAS  Article  PubMed Central  Google Scholar 

  13. Dikici S, Claeyssens F, MacNeil S (2019) Decellularised baby spinach leaves and their potential use in tissue engineering applications: studying and promoting neovascularisation. J Biomater Appl 34(4):546–559. https://doi.org/10.1177/0885328219863115

    Article  PubMed  Google Scholar 

  14. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131. https://doi.org/10.1023/A:1017512029696

    CAS  Article  Google Scholar 

  15. Ernst O, Zor T (2010) Linearization of the bradford protein assay. Jove J Vis Exp 38:1918. https://doi.org/10.3791/1918

    CAS  Article  Google Scholar 

  16. Evans DW, Moran EC, Baptista PM, Soker S, Sparks JL (2013) Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech Model Mech 12(3):569–580. https://doi.org/10.1007/s10237-012-0426-3

    Article  Google Scholar 

  17. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform—materials analysis. InTech, chap 3, pp 45–68, https://doi.org/10.5772/35482

  18. Fang S, Li L, Cui B, Men S, Shen Y, Yang X (2013) Structural insight into plant programmed cell death mediated by BAG proteins in Arabidopsis thaliana. Acta Crystallogr Sect D Biol Crystallogr 69(6):934–945. https://doi.org/10.1107/S0907444913003624

    CAS  Article  Google Scholar 

  19. Fontana G, Gershlak J, Adamski M, Lee JS, Matsumoto S, Le HD, Binder B, Wirth J, Gaudette G, Murphy WL (2017) Biofunctionalized plants as diverse biomaterials for human cell culture. Adv Healthc Mater 6(8):1601225. https://doi.org/10.1002/adhm.201601225

    CAS  Article  Google Scholar 

  20. Gershlak JR, Hernandez S, Fontana G, Perreault LR, Hansen KJ, Larson SA, Binder BY, Dolivo DM, Yang T, Dominko T, Rolle MW, Weathers PJ, Medina-Bolivar F, Cramer CL, Murphy WL, Gaudette GR (2017) Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125:13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Ghasemi M, Alexandridis P, Tsianou M (2018) Dissolution of cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromolecules 19(2):640–651. https://doi.org/10.1021/acs.biomac.7b01745

    CAS  Article  PubMed  Google Scholar 

  22. Gilbert RD, Kadla JF (1998) Polysaccharides—cellulose. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 47–95. https://doi.org/10.1007/978-3-662-03680-8_3

    Google Scholar 

  23. Heaton JW, Marangoni AG (1995) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7(1):8–15. https://doi.org/10.1016/0924-2244(96)81352-5

    Article  Google Scholar 

  24. Hickey RJ, Pelling AE (2019) Cellulose biomaterials for tissue engineering. Front Bioeng Biotech 7(March 2019):1–15. https://doi.org/10.3389/fbioe.2019.00045

    Article  Google Scholar 

  25. Houghton J, Weatherwax S, Ferrell J (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. Technical report, U.S. Department of Energy Office of Science, Report

  26. Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A 401:97–106. https://doi.org/10.1016/j.colsurfa.2012.03.031

    CAS  Article  Google Scholar 

  27. Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11(1):33–39. https://doi.org/10.1016/j.tplants.2005.11.006

    CAS  Article  PubMed  Google Scholar 

  28. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):1–19. https://doi.org/10.1002/app.41719

    CAS  Article  Google Scholar 

  29. Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136

    CAS  Article  PubMed  Google Scholar 

  30. Kotelnikova NE, Lashkevich OV, Panarin EF (2001) Mutual effect of the interaction of human serum albumin with cellulose in water. Macromol Sympos 166:147–156. https://doi.org/10.1017/CBO9781107415324.004

    CAS  Article  Google Scholar 

  31. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. In: White MK, Amini S (eds) Neuronal cell culture methods and protocols methods in molecular biology. Springer, New York, pp 9–21

    Google Scholar 

  32. Kumar A, Ryparová P, Škapin AS, Humar M, Pavlič M, Tywoniak J, Hajek P, Žigon J, Petrič M (2016) Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 23(5):3249–3263. https://doi.org/10.1007/s10570-016-1009-8

    CAS  Article  Google Scholar 

  33. Kwon SM, Jang JH, Lee SH, Park SB, Kim NH (2013) Change of heating value, pH and FT-IR spectra of charcoal at different carbonization temperatures. J Korean Wood Sci Technol 41(5):440–446. https://doi.org/10.5658/WOOD.2013.41.5.440

    Article  Google Scholar 

  34. Lam WA, Cao L, Umesh V, Keung AJ, Sen S, Kumar S (2010) Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol Cancer 9:1–7. https://doi.org/10.1186/1476-4598-9-35

    CAS  Article  Google Scholar 

  35. Lodish H, Berk A, Zipursky S (2000) The dynamic plant cell wall. In: Molecular cell biology, 4th edn, chap 22. W. H. Freeman, New York

  36. Mathialagan M, Ismail H (2016) Polyvinyl alcohol-modified pithecellobium clypearia benth herbal residue fiber polypropylene composites. Polym Compos 37(1):915–924. https://doi.org/10.1002/pc.23250

    CAS  Article  Google Scholar 

  37. Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE (2014) Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE 9(5):e97835. https://doi.org/10.1371/journal.pone.0097835

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Modulevsky DJ, Cuerrier CM, Pelling AE (2016) Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE 11(6):1–19. https://doi.org/10.1371/journal.pone.0157894

    CAS  Article  Google Scholar 

  39. Mujtaba M, Sargin I, Kaya M (2018) Determination of bovine serum albumin adsorption capacity of newly obtained cellulose extracted from Glycyrrhiza glabra (Licorice). Adv. Polym. Technol. 37(2):606–611. https://doi.org/10.1002/adv.21701

    CAS  Article  Google Scholar 

  40. Musielak TJ, Schenkel L, Kolb M, Henschen A, Bayer M (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28(3–4):161–169. https://doi.org/10.1007/s00497-015-0267-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Nam KH, Jamilpour N, Mfoumou E, Wang FY, Zhang DD, Wong PK (2014) Probing mechanoregulation of neuronal differentiation by plasma lithography patterned elastomeric substrates. Sci Rep 4:1–9. https://doi.org/10.1038/srep06965

    CAS  Article  Google Scholar 

  42. Namvar F, Jawaid M, Tahir PM, Mohamad R, Azizi S, Khodavandi A, Rahman HS, Nayeri MD (2014) Potential use of plant fibres and their composites for biomedical applications. BioResour 9(3):5688–5706. https://doi.org/10.15376/biores.9.3

    Article  Google Scholar 

  43. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    CAS  Article  Google Scholar 

  44. Odabasi M, Garipcan B, Denizli A (2003) Preparation of a novel metal-chelate affinity beads for albumin isolation from human plasma. J Appl Polym Sci 90:2840–2847. https://doi.org/10.1002/app.12993

    CAS  Article  Google Scholar 

  45. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 52(3):151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

    CAS  Article  Google Scholar 

  46. Pucetaite M (2012) Archaeological wood from the Swedish warship Vasa studied by infrared microscopy. PhD thesis, Lunds University

  47. Rattana T, Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32:759–764. https://doi.org/10.1016/j.proeng.2012.02.009

    CAS  Article  Google Scholar 

  48. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2016) Cell viability assays. In: Sittampalam G, Coussens N (eds) National Institutes of Health. Assay Guidance Manual, Eli Lilly & Company and the National Center for Advancing Translational Sciences, pp 357–388

  49. Robb KP, Shridhar A, Flynn LE (2017) Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater Sci Eng 4(11):3627–3643. https://doi.org/10.1021/acsbiomaterials.7b00619

    CAS  Article  Google Scholar 

  50. Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Fundam Asp Curr Trends. https://doi.org/10.5772/61334

    Article  Google Scholar 

  51. Sarapirom S, Yu LD, Boonyawan D, Chaiwong C (2014) Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin. Appl Surf Sci 310:42–50. https://doi.org/10.1016/j.apsusc.2014.03.141

    CAS  Article  Google Scholar 

  52. Song M, Liu Y, Hui L (2018) Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep 17(1):138–146. https://doi.org/10.3892/mmr.2017.7857

    CAS  Article  PubMed  Google Scholar 

  53. Taokaew S, Phisalaphong M, BmZ Newby (2015) Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22(4):2311–2324. https://doi.org/10.1007/s10570-015-0651-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Tasnim N, Kumar A, Joddar B (2017) Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating. Mater Sci Eng C Mater Biol Appl 73:788–797. https://doi.org/10.1016/j.msec.2016.12.123

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Thippan M, Dhoolappa M, Lakshmishree KT, Sheela P (2019) Morphology of medicinal plant leaves for their functional vascularity: a novel approach for tissue engineering applications. Int J Chem Stud 7(3):55–58

    CAS  Google Scholar 

  56. Wang B, Luo PG, Tackett KN II, Ruiz ON, Sun YP (2013) Graphene oxides as substrate for enhanced mammalian cell growth. J Nanomater Mol Nanotechnol 1(2):2–5. https://doi.org/10.4172/2324-8777.1000102

    Article  Google Scholar 

  57. Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc 188:51–61. https://doi.org/10.1046/j.1365-2818.1977.2390796.x

    CAS  Article  PubMed  Google Scholar 

  58. Yan T, Zhang H, Huang D, Feng S, Fujita M, Gao XD (2017) Chitosan-functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials 7(3):59. https://doi.org/10.3390/nano7030059

    CAS  Article  PubMed Central  Google Scholar 

  59. Zangala T (2007) Isolation of genomic DNA from mouse tails. Jove J Vis Exp 6:246. https://doi.org/10.3791/246

    Article  Google Scholar 

  60. Zhang H, Zhou L, Zhang W (2014) Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 20(5):492–502. https://doi.org/10.1089/ten.teb.2013.0452

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Deniz Bayraktar for conducting mechanical tests. This work is partially supported by Bogazici University Research Fund Grant Number No: 6701.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bora Garipcan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 178 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toker, M., Rostami, S., Kesici, M. et al. Decellularization and characterization of leek: a potential cellulose-based biomaterial. Cellulose 27, 7331–7348 (2020). https://doi.org/10.1007/s10570-020-03278-4

Download citation

Keywords

  • Leek (Allium porrum)
  • Plants
  • Cellulose
  • Decellularization
  • Surface modification
  • Biomaterials