Abstract
The use of cellulases has been explored for several decades to depolymerize cellulosic materials to their monosaccharide units and use them to produce fuels, chemicals and biomaterials, among others. The use of cellulases to obtain nanocellulose (NC) actively began during the last decade due to the increasing interest in the development of industrial-scale processes based on a more environmentally friendly approach. Since then, a myriad of studies reported green strategies using cellulases for isolating cellulose nanofibrils and cellulose nanocrystals from a wide variety of cellulosic materials. Most of these studies use reaction conditions similar to those employed for the complete depolymerization of cellulose, resulting in low yields and particles that are heterogeneous in size and crystallinity. To overcome this, the classical synergism between cellulases must be revisited in order to enhance NC yields and properties. Some recent works have demonstrated that unusual reaction conditions employing enzymes from different organisms and modified enzyme systems, assisted or not by mild biomass pretreatment techniques, were able to modify the classical enzyme mode of action and these may be potentially explored to improve NC isolation. In this work, the use of enzymes (mostly cellulases) for optimal NC isolation is reviewed. Also, unconventional strategies used to boost hydrolysis efficiency are discussed in the light of their potential to improve yields and properties of the resulting nanocellulosic materials.
Graphic abstract






Adapted from de Campos et al. (2019). Reproduced with permission from Creative Commons Attribution 4.0 International License


Adapted from Silveira and Skaf (2018)

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. https://doi.org/10.1007/s10570-013-9871-0
Aissa K, Karaaslan MA, Renneckar S, Saddler JN (2019) Functionalizing cellulose nanocrystal with Click modifiable carbohydrate-binding modules. Biomacromol 20:3087–3093. https://doi.org/10.1021/acs.biomac.9b00646
Ankerfors M, Lindström T, Söderberg D (2014) The use of microfibrillated cellulose in fine paper manufacturing—results from a pilot scale papermaking trial. Nord Pulp Pap Res J 29:476–483. https://doi.org/10.3183/npprj-2014-29-03-p476-483
Assis CA, Houtman C, Phillips R, Bilek E, Rojas OJ, Pal L, Peresin MS, Jameel H, Gonzalez R (2017) Conversion economics of forest biomaterials: risk and financial analysis of CNC manufacturing. Biofuels, Bioprod Biorefin 11:682–700. https://doi.org/10.1002/bbb.1782
Balea A, Blanco A, Negro C (2019) Nanocelluloses: natural-based materials for fiber-reinforced cement composites. Crit Rev Polym 11:518. https://doi.org/10.3390/polym11030518
Barruetabeña N, Alonso-Lerma B, Galera-Prat A, Joudeh N, Barandiaran L, Aldazabal L, Arbulu M, Alcalde M, De Sancho D, Gavira JA (2019) Resurrection of efficient Precambrian endoglucanases for lignocellulosic biomass hydrolysis. Commun Chem 2:76. https://doi.org/10.1038/s42004-019-0176-6
Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. https://doi.org/10.1146/annurev.micro.57.030502.091022
Beckham GT, Ståhlberg J, Knott BC, Himmel ME, Crowley MF, Sandgren M, Sørlie M, Payne CM (2014) Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Curr Opin Biotechnol 27:96–106. https://doi.org/10.1016/j.copbio.2013.12.002
Beltramino F, Blanca Roncero M, Vidal T, Valls C (2018) A novel enzymatic approach to nanocrystalline cellulose preparation. Carbohyd Polym 189:39–47. https://doi.org/10.1016/j.carbpol.2018.02.015
Bernardes A, Pellegrini V, Curtolo F, Camilo C, Mello B, Johns M, Scott J, Guimaraes F, Polikarpov I (2019) Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohyd Polym 211:57–68. https://doi.org/10.1016/j.carbpol.2019.01.108
Beyene D, Chae M, Dai J, Danumah C, Tosto F, Demesa AG, Bressler DC (2017) Enzymatically-mediated co-production of cellulose nanocrystals and fermentable sugars. Catalysts 7:322. https://doi.org/10.3390/catal7110322
Beyene D, Chae M, Dai J, Danumah C, Tosto F, Demesa AG, Bressler DC (2018) Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis. Materials (Basel, Switzerland). https://doi.org/10.3390/ma11081272
Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383. https://doi.org/10.1016/S0734-9750(00)00041-0
Bondancia TJ, Corrêa LJ, Cruz AJG, Badino AC, Mattoso LHC, Marconcini JM, Farinas CS (2018) Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior. Cellulose 25:4499–4511. https://doi.org/10.1007/s10570-018-1876-2
Boufi S, González I, Delgado-Aguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohyd Polym 154:151–166. https://doi.org/10.1016/j.carbpol.2016.07.117
Camargo L, Pereira S, Correa A, Farinas C, Marconcini J, Mattoso L (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Res 9:894–906. https://doi.org/10.1007/s12155-016-9744-0
Charreau H, Cavallo E, Foresti ML (2020) Patents involving nanocellulose: analysis of their evolution since 2010. Carbohyd Polym 237:116039. https://doi.org/10.1016/j.carbpol.2020.116039
Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohyd Polym 181:879–884. https://doi.org/10.1016/j.carbpol.2017.11.064
Chung D, Sarai NS, Knott BC, Hengge N, Russell J, Yarbrough JM, Brunecky R, Young J, Supekar N, Vander Wall T (2019) Glycosylation is vital for industrial performance of hyper-active cellulases. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b05049
Dai J, Chae M, Beyene D, Danumah C, Tosto F, Bressler D (2018) Co-production of cellulose nanocrystals and fermentable sugars assisted by endoglucanase treatment of wood pulp. Materials 11:1645. https://doi.org/10.3390/ma11091645
de Campos A, Corrêa AC, Claro PIC, de Morais Teixeira E, Marconcini JM (2019) Processing, characterization and application of micro and nanocellulose based environmentally friendly polymer composites. In: Sustainable polymer composites and nanocomposites, Springer, pp 1–35
Delgado-Aguilar M, González I, Tarrés Q, Pèlach MÀ, Alcalà M, Mutjé P (2016) The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind Crops Prod 86:295–300. https://doi.org/10.1016/j.indcrop.2016.04.010
Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325. https://doi.org/10.1006/jmbi.1997.1437
Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87. https://doi.org/10.1016/j.indcrop.2016.01.048
Endes C, Camarero-Espinosa S, Mueller S, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD (2016) A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnol 14:78. https://doi.org/10.1186/s12951-016-0230-9
Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240. https://doi.org/10.1016/j.powtec.2014.04.039
Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814. https://doi.org/10.1039/B915746H
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://doi.org/10.1039/C6CS00895J
France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531
Girelli AM, Astolfi ML, Scuto FR (2019) Agro-industrial wastes as potential carriers for enzyme immobilization: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125368
Gourlay K, Van Der Zwan T, Shourav M, Saddler J (2018) The potential of endoglucanases to rapidly and specifically enhance the rheological properties of micro/nanofibrillated cellulose. Cellulose 25:977–986. https://doi.org/10.1007/s10570-017-1637-7
Gusakov AV, Dotsenko AS, Rozhkova AM, Sinitsyn AP (2017) N-Linked glycans are an important component of the processive machinery of cellobiohydrolases. Biochimie 132:102–108. https://doi.org/10.1016/j.biochi.2016.11.004
Hamad WY, Miao C, Beck S (2019) Growing the bioeconomy: advances in the development of applications for cellulose filaments and nanocrystals. Ind Biotechnol 15:133–137. https://doi.org/10.1089/ind.2019.29172.qyh
Hammerer F, Loots L, Do JL, Therien JD, Nickels CW, Friščić T, Auclair K (2018) Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew Chem 130:2651–2654. https://doi.org/10.1002/ange.201711643
Himmel ME, Adney WS, Baker JO, Nieves RA, Thomas SR (2018) Cellulases: structure, function, and applications. In: Handbook on Bioethanol. Routledge, pp 143–161
Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358–364. https://doi.org/10.1016/S0958-1669(99)80065-2
Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. https://doi.org/10.1039/C6NR03054H
Holtzapple MT, Caram HS, Humphrey AE (1984) The HCH-1 model of enzymatic cellulose hydrolysis. Biotechnol Bioeng 26:775–780. https://doi.org/10.1002/bit.260260723
Hoyos CG, Cristia E, Vázquez A (2013) Effect of cellulose microcrystalline particles on properties of cement based composites. Mater Des 51:810–818. https://doi.org/10.1016/j.matdes.2013.04.060
Hu J, Mok YK, Saddler JN (2018) Can we reduce the cellulase enzyme loading required to achieve efficient lignocellulose deconstruction by only using the initially absorbed enzymes? ACS Sustain Chem Eng 6:6233–6239. https://doi.org/10.1021/acssuschemeng.8b00004
Huang J, Dufresne A, Lin N (2019) Nanocellulose: From Fundamentals to Advanced Materials, vol 1. Wiley, New York
Kahn A, Galanopoulou AP, Hatzinikolaou DG, Moraïs S, Bayer EA (2018) Evaluation of thermal stability of cellulosomal hydrolases and their complex formation. In: Cellulases. Springer, pp 153–166. https://doi.org/10.1007/978-1-4939-7877-9_12
Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (2017) Handbook of nanocellulose and cellulose nanocomposites, vol 1. Wiley Online Library. https://doi.org/10.1002/9783527689972
Khare S, DeLoid GM, Molina RM, Gokulan K, Couvillion SP, Bloodsworth KJ, Eder EK, Wong AR, Hoyt DW, Bramer LM, Metz TO, Thrall BD, Brain JD, Demokritou P (2020) Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact 18:100216. https://doi.org/10.1016/j.impact.2020.100216
Knott BC, Crowley MF, Himmel ME, Ståhlberg J, Beckham GT (2014) Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity. J Am Chem Soc 136:8810–8819. https://doi.org/10.1021/ja504074g
Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816. https://doi.org/10.1021/am200475b
Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. https://doi.org/10.1007/s10570-007-9184-2
Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026
Leo VV, Ramesh N, Singh BP (2019) Microorganisms as an efficient tool for cellulase production: availability, diversity, and efficiency. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 45–61. https://doi.org/10.1016/B978-s0-444-64223-3.00004-7
Lerma BA (2019) Isolation, characterization and applications of nanocellulose produced by ancestral enzymes. Universidad del País Vasco-Euskal Herriko Unibertsitatea
Li X, Converse AO, Wyman CE (2003) Characterization of molecular weight distribution of oligomers from autocatalyzed batch hydrolysis of xylan. In: Davison BH, Lee JW, Finkelstein M, McMillan JD (eds) Biotechnology for fuels and chemicals: the twenty-fourth symposium. Humana Press, Totowa, pp 515–522. https://doi.org/10.1007/978-1-4612-0057-4_43
Liang C, Gu C, Raftery J, Karim MN, Holtzapple M (2019) Development of modified HCH-1 kinetic model for long-term enzymatic cellulose hydrolysis and comparison with literature models. Biotechnol Biofuels 12:34. https://doi.org/10.1186/s13068-019-1371-5
Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
Liu H, Geng B, Chen Y, Wang H (2016) Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain Chem Eng 5:49–66. https://doi.org/10.1021/acssuschemeng.6b02301
Lizundia E, Delgado-Aguilar M, Mutjé P, Fernández E, Robles-Hernandez B, de la Fuente MR, Vilas JL, León LM (2016) Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 23:1997–2010. https://doi.org/10.1007/s10570-016-0920-3
Lou H, Zeng M, Hu Q, Cai C, Lin X, Qiu X, Yang D, Pang Y (2018) Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Biores Technol 249:1–8. https://doi.org/10.1016/j.biortech.2017.07.066
Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793. https://doi.org/10.1021/bp990109e
Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806. https://doi.org/10.1002/polb.23490
Martelli-Tosi M, Torricillas MdS, Martins MA, Assis OBGd, Tapia-Blácido DR (2016) Using commercial enzymes to produce cellulose nanofibers from soybean straw. J Nanomater. https://doi.org/10.1155/2016/8106814
Meenu K, Singh G, Vishwakarma RA (2014) Chapter 22—molecular mechanism of cellulase production systems in Trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma. Elsevier, Amsterdam, pp 319–324. https://doi.org/10.1016/B978-0-444-59576-8.00022-9
Mohammadkazemi F, Doosthoseini K, Ganjian E, Azin M (2015) Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites. Constr Build Mater 101:958–964. https://doi.org/10.1016/j.conbuildmat.2015.10.093
Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157. https://doi.org/10.1007/s10570-015-0576-4
Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003
Peters SJ, Rushing TS, Landis EN, Cummins TK (2010) Nanocellulose and microcellulose fibers for concrete. Trans Res Rec 2142:25–28. https://doi.org/10.3141/2142-04
Piccinno F, Hischier R, Seeger S, Som C (2018) Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J Clean Prod 174:283–295. https://doi.org/10.1016/j.jclepro.2017.10.226
Pirich CL, Picheth GF, Machado JPE, Sakakibara CN, Martin AA, de Freitas RA, Sierakowski MR (2019) Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis. Int J Biol Macromol 130:622–626. https://doi.org/10.1016/j.ijbiomac.2019.02.166
Rahikainen J, Ceccherini S, Molinier M, Holopainen-Mantila U, Reza M, Väisänen S, Puranen T, Kruus K, Vuorinen T, Maloney T (2019) Effect of cellulase family and structure on modification of wood fibres at high consistency. Cellulose 26:5085–5103. https://doi.org/10.1007/s10570-019-02424-x
Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437
Reid MS, Villalobos M, Cranston ED (2016) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765
Reixach R, Claramunt J, Chamorro MÀ, Llorens J, Pareta MM, Tarrés Q, Mutjé P, Delgado-Aguilar M (2019) On the path to a new generation of cement-based composites through the use of lignocellulosic micro/nanofibers. Materials 12:1584. https://doi.org/10.3390/ma12101584
Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33. https://doi.org/10.1089/ind.2014.0024
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970
Salas C, Hubbe M, Rojas OJ (2019) Nanocellulose Applications in Papermaking. In: Fang Z, Smith JRL, Tian X-F (eds) Production of Materials from Sustainable Biomass Resources. Springer, Singapore, pp 61–96. https://doi.org/10.1007/978-981-13-3768-0_3
Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JKC (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–21. https://doi.org/10.1016/0378-1119(88)90541-0
Serna-Cock L, Guancha-Chalapud MA (2017) Natural fibers for hydrogels production and their applications in agriculture. Acta Agronómica 66:495–505. https://doi.org/10.15446/acag.v66n4.56875
Shalaby TI, Fekry NM, Sodfy ASE, Sheredy AGE, Moustafa MESSA (2015) Preparation and characterisation of antibacterial silver-containing nanofibres for wound healing in diabetic mice. Int J Nanopart 8:82–98. https://doi.org/10.1504/IJNP.2015.070346
Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites—a review. Biotechnol Rep 21:e00316. https://doi.org/10.1016/j.btre.2019.e00316
Silveira MHL, Siika-aho M, Kruus K, Garriga LM, Ramos LP (2014) The essential role of plant cell wall degrading enzymes in the success of biorefineries: current status and future challenges. In: da Silva SS, Chandel AK (eds) Biofuels in Brazil: fundamental aspects, Recent Developments, and Future Perspectives. Springer International Publishing, Cham, pp 151–172. doi:10.1007/978–3–319–05020–1_8
Silveira RL, Skaf MS (2018) Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase. Phys Chem Chem Phys 20:7498–7507
Siqueira G, Tapin-Lingua S, Bras J, da Silva PD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. https://doi.org/10.1007/s10570-010-9449-z
Siqueira GA, Dias IK, Arantes V (2019) Exploring the action of endoglucanases on bleached eucalyptus kraft pulp as potential catalyst for isolation of cellulose nanocrystals. Int J Biol Macromol 133:1249–1259. https://doi.org/10.1016/j.ijbiomac.2019.04.162
Stepnov AA, Fredriksen L, Steen IH, Stokke R, Eijsink VGH (2019) Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field. PLoS ONE 14:e0222216. https://doi.org/10.1371/journal.pone.0222216
TAPPI-WI-3021 (2010) Proposed new TAPPI standard: Standard terms and their definition for cellulose nanomaterial. https://www.tappi.org/content/hide/draft3.pdf. Accessed 2020
Tarrés Q, Oliver-Ortega H, Ferreira PJ, Pèlach MÀ, Mutjé P, Delgado-Aguilar M (2018) Towards a new generation of functional fiber-based packaging: cellulose nanofibers for improved barrier, mechanical and surface properties. Cellulose 25:683–695. https://doi.org/10.1007/s10570-017-1572-7
Tarrés Q, Oliver-Ortega H, Llop M, Pèlach MÀ, Delgado-Aguilar M, Mutjé P (2016a) Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose 23:3077–3088. https://doi.org/10.1007/s10570-016-1017-8
Tarrés Q, Saguer E, Pèlach M, Alcalà M, Delgado-Aguilar M, Mutjé P (2016b) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23:1433–1445. https://doi.org/10.1007/s10570-016-0889-y
Teixeira RSS, da Silva ASA, Jang J-H, Kim H-W, Ishikawa K, Endo T, Lee S-H, Bon EP (2015) Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohyd Polym 128:75–81. https://doi.org/10.1016/j.carbpol.2015.03.087
Turk J, Oven P, Poljanšek I, Lešek A, Knez F, Malovrh Rebec K (2020) Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods. J Clean Product 247:119107. https://doi.org/10.1016/j.jclepro.2019.119107
Valls C, Pastor FJ, Roncero MB, Vidal T, Diaz P, Martínez J, Valenzuela SV (2019) Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. Biotechnol Biofuels 12:161. https://doi.org/10.1186/s13068-019-1502-z
Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 6:30. https://doi.org/10.1186/1754-6834-6-30
Wang J, Liu X, Jin T, He H, Liu L (2019a) Preparation of nanocellulose and its potential in reinforced composites: a review. J Biomater Sci Polym Ed 30:919–946. https://doi.org/10.1080/09205063.2019.1612726
Wang X, Chang CH, Jiang J, Liu Q, Liao YP, Lu J, Li L, Liu X, Kim J, Ahmed A (2019b) The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo. Small 15:1901642. https://doi.org/10.1002/smll.201901642
Wang Z, Zhang T, Long L, Ding S (2018) Altering the linker in processive GH5 endoglucanase 1 modulates lignin binding and catalytic properties. Biotechnol Biofuels 11:332. https://doi.org/10.1186/s13068-018-1333-3
Wolfenden R, Lu X, Young G (1998) Spontaneous hydrolysis of glycosides. J Am Chem Soc 120:6814–6815. https://doi.org/10.1021/ja9813055
Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides 1:1023–1062. https://doi.org/10.1021/ja0410486
Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci. https://doi.org/10.1155/2018/7923068
Yarbrough JM, Zhang R, Mittal A, Vander Wall T, Bomble YJ, Decker SR, Himmel ME, Ciesielski PN (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109. https://doi.org/10.1021/acsnano.7b00086
Yassin MA, Gad AAM, Ghanem AF, Rehim MHA (2019) Green synthesis of cellulose nanofibers using immobilized cellulase. Carbohyd Polym 205:255–260. https://doi.org/10.1016/j.carbpol.2018.10.040
Yuan Z, Wei W, Wen Y (2019) Improving the production of nanofibrillated cellulose from bamboo pulp by the combined cellulase and refining treatment. J Chem Technol Biotechnol 94:2178–2186. https://doi.org/10.1002/jctb.5998
Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18. https://doi.org/10.1021/ar970172+
Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. https://doi.org/10.1021/cm5004164
Zhou M, Ju X, Li L, Yan L, Xu X, Chen J (2019) Immobilization of cellulase in the non-natural ionic liquid environments to enhance cellulase activity and functional stability. Appl Microbiol Biotechnol 103:2483–2492. https://doi.org/10.1007/s00253-019-09647-9
Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromol 19:633–639. https://doi.org/10.1021/acs.biomac.7b01730
Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792. https://doi.org/10.1039/C3NR00520H
Acknowledgments
The authors acknowledge the Brazilian funding agency entitled Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico (CNPq, grant 309506/2017–4) for financial support. This work was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pirich, C.L., Picheth, G.F., Fontes, A.M. et al. Disruptive enzyme-based strategies to isolate nanocelluloses: a review. Cellulose 27, 5457–5475 (2020). https://doi.org/10.1007/s10570-020-03185-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-020-03185-8

