Skip to main content
Log in

Palladium nano-catalyst supported on cationic nanocellulose–alginate hydrogel for effective catalytic reactions

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Green/sustainable catalyst system is highly desirable, and to this end, biopolymer based functional hydrogel has received much attention due to its various unique properties. Herein, a palladium nanoparticle catalyst supported by natural polymer-based hydrogel, consisting of cationic nanocellulose and alginate (Pd NPs@CNCC–AHB) was prepared and its efficient catalytic applications were demonstrated for dye removal and Suzuki coupling reaction. Cationic nanocellulose was prepared based on (1) periodate oxidation, (2) Schiff base reaction, then the hydrogels were synthesized based on the ionic interaction (Ca2+) and electrostatic interactions of cationic nanocellulose and anionic alginate. Subsequently, Pd NPs formed in situ within the hydrogel based on green synthesis, consisting of PdCl2 adsorption into the CNCC–AHB hydrogel, and carbonyl-induced reduction of Pd2+ to Pd0 at 80 °C (carbonyl groups of nanocellulose as a result of periodate oxidation). CNCC here acted as the support/stabilizer and reducing agent for the preparation of Pd NPs. The TEM image shows the average diameter of Pd NPs is ~ 9 nm inside the CNCC–AHB hydrogel matrices. The as-prepared Pd NPs@CNCC–AHB hydrogel bead catalyst showed excellent performance for methylene blue in both batch and continuous systems. Also, a high catalytic performance (as high as 99% yield after 2 h) for the Suzuki reaction was obtained. The recyclability of the hydrogel catalyst was investigated. The palladium nanoparticle loaded cationic nanocellulose–alginate hydrogel (Pd NPs@CNCC–AHB) catalyst system has great potential for catalytic applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abouzeid RE, Khiari R, Beneventi D, Dufresne A (2018) Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules 19:4442–4452

    CAS  PubMed  Google Scholar 

  • Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, López N, Pérez-Ramírez J (2018) Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat Commun 9:2634

    PubMed  PubMed Central  Google Scholar 

  • An X, Long Y, Ni Y (2017) Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydr Polym 156:253–258

    CAS  PubMed  Google Scholar 

  • Ao C et al (2018) Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation. Chem Eng J 338:271–277

    CAS  Google Scholar 

  • Chen C, Hu L (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res 51:3154–3165

    CAS  PubMed  Google Scholar 

  • Chen P, Zhang X, Miao Z, Han B, An G, Liu Z (2009) In situ synthesis of noble metal nanoparticles in alginate solution and their application in catalysis. J Nanosci Nanotechnol 9:2628–2633

    CAS  PubMed  Google Scholar 

  • Chen F et al (2017) Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282

    CAS  PubMed  Google Scholar 

  • Cincotto FH, Golinelli DL, Machado SA, Moraes FC (2017) Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens Actuators B Chem 239:488–493

    CAS  Google Scholar 

  • Dai L, Liu R, Hu L-Q, Zou Z-F, Si C-L (2017a) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5:8241–8249. https://doi.org/10.1021/acssuschemeng.7b01903

    Article  CAS  Google Scholar 

  • Dai L, Zhang L, Wang B, Yang B, Khan I, Khan A, Ni Y (2017b) Multifunctional self-assembling hydrogel from guar gum. Chem Eng J 330:1044–1051

    CAS  Google Scholar 

  • Dai H, Huang Y, Huang H (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym 185:1–11

    PubMed  Google Scholar 

  • Dai L, Cao Q, Wang K, Han S, Si C, Liu D, Liu Y (2020a) High efficient recovery of l-lactide with lignin-based filler by thermal degradation. Ind Crops Prod 143:111954. https://doi.org/10.1016/j.indcrop.2019.111954

    Article  CAS  Google Scholar 

  • Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y (2020b) Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small. https://doi.org/10.1002/smll.201906567

    Article  PubMed  Google Scholar 

  • Gautam P, Dhiman M, Polshettiwar V, Bhanage BM (2016) KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki–Miyaura cross-coupling. Green Chem 18:5890–5899

    CAS  Google Scholar 

  • Gu J, Hu C, Zhang W, Dichiara AB (2018) Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Appl Catal B Environ 237:482–490. https://doi.org/10.1016/j.apcatb.2018.06.002

    Article  CAS  Google Scholar 

  • Heijnen D, Tosi F, Vila C, Stuart MC, Elsinga PH, Szymanski W, Feringa BL (2017) Oxygen activated, palladium nanoparticle catalyzed, ultrafast cross-coupling of organolithium reagents. Angew Chem Int Ed 56:3354–3359

    CAS  Google Scholar 

  • Hou L, Udangawa WRN, Pochiraju A, Dong W, Zheng Y, Linhardt RJ, Simmons TJ (2016) Synthesis of heparin-immobilized, magnetically addressable cellulose nanofibers for biomedical applications. ACS Biomater Sci Eng 2:1905–1913

    CAS  PubMed  Google Scholar 

  • Hu Z-H, Omer AM, Ouyang XK, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    CAS  PubMed  Google Scholar 

  • Kaushik M, Moores A (2016) nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    CAS  Google Scholar 

  • Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492

    CAS  PubMed  Google Scholar 

  • Kontturi E, Laaksonen P, Linder MB, Gröschel AH, Rojas OJ, Ikkala O (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 30:1703779

    Google Scholar 

  • Kuang Y et al (2018) Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv Energy Mater 8:1802398

    Google Scholar 

  • Kumbhar A, Jadhav S, Kamble S, Rashinkar G, Salunkhe R (2013) Palladium supported hybrid cellulose–aluminum oxide composite for Suzuki–Miyaura cross coupling reaction. Tetrahedron Lett 54:1331–1337

    CAS  Google Scholar 

  • Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541

    CAS  PubMed  Google Scholar 

  • Leguy J, Diallo A, Putaux J-L, Nishiyama Y, Heux L, Jean B (2018) Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir ACS J Surf Colloids 34:11066–11075

    CAS  Google Scholar 

  • Li Y et al (2017) Cellulose sponge supported palladium nanoparticles as recyclable cross-coupling catalysts. ACS Appl Mater Interfaces 9:17155–17162

    CAS  PubMed  Google Scholar 

  • Liu JC, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci. https://doi.org/10.1002/app.41970

    Article  Google Scholar 

  • Lu H et al (2019) Cellulose-supported magnetic Fe3O4–MOF composites for enhanced dye removal application. Cellulose 26:4909–4920

    CAS  Google Scholar 

  • Mao H, Shen Y, Zhang Q, Ulaganathan M, Zhao S, Yang Y, Hng HH (2016) Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon. Carbon 96:75–82

    CAS  Google Scholar 

  • Martins M, Mourato C, Sanches S, Noronha JP, Crespo MB, Pereira IA (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168

    CAS  PubMed  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Nascimento DM et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428–2448

    CAS  Google Scholar 

  • Niu Y, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840–6846

    CAS  Google Scholar 

  • Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate–carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409

    CAS  PubMed  Google Scholar 

  • Sahiner N, Demirci S (2017) Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl Catal B Environ 202:199–206

    CAS  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    CAS  Google Scholar 

  • Tong R et al (2019) Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20:2096–2104

    CAS  PubMed  Google Scholar 

  • Vilian AE, Puthiaraj P, Kwak CH, Hwang S-K, Huh YS, Ahn W-S, Han Y-K (2016) Fabrication of palladium nanoparticles on porous aromatic frameworks as a sensing platform to detect vanillin. ACS Appl Mater Interfaces 8:12740–12747

    CAS  PubMed  Google Scholar 

  • Wang B, Dai L, Yang G, Bendrich G, Ni Y, Fang G (2019) A highly efficient thermo responsive palladium nanoparticles incorporated guar gum hydrogel for effective catalytic reactions. Carbohydr Polym 226:115289

    CAS  PubMed  Google Scholar 

  • Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1:71–79

    CAS  Google Scholar 

  • Wu X, Shi Z, Fu S, Chen J, Berry RM, Tam KC (2016) Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain Chem Eng 4:5929–5935

    CAS  Google Scholar 

  • Xiang Z, Chen Y, Liu Q, Lu F (2018) A highly recyclable dip-catalyst produced from palladium nanoparticle-embedded bacterial cellulose and plant fibers. Green Chem 20:1085–1094. https://doi.org/10.1039/C7GC02835K

    Article  CAS  Google Scholar 

  • Xie J, Li J (2017) Smart drug delivery system based on nanocelluloses. J Bioresour Bioprod 2:1–3

    Google Scholar 

  • Yang H, van de Ven TGM (2016) Preparation of hairy cationic nanocrystalline cellulose. Cellulose 23:1791–1801. https://doi.org/10.1007/s10570-016-0902-5

    Article  CAS  Google Scholar 

  • Yang J, Chen D, Zhu Y, Zhang Y, Zhu Y (2017) 3D–3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl Catal B Environ 205:228–237

    CAS  Google Scholar 

  • Yang F et al (2018) Silica nanosphere supported palladium nanoparticles encapsulated with graphene: high-performance electrocatalysts for methanol oxidation reaction. Appl Surf Sci 452:11–18

    CAS  Google Scholar 

  • Yu H et al (2019) Binding conductive ink initiatively and strongly: transparent and thermally stable cellulose nanopaper as a promising substrate for flexible electronics. ACS Appl Mater Interfaces 11:20281–20290

    CAS  PubMed  Google Scholar 

  • Yue Y, Wang X, Han J, Yu L, Chen J, Wu Q, Jiang J (2019) Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: mechanical properties and adsorption–desorption capacities. Carbohydr Polym 206:289–301

    CAS  PubMed  Google Scholar 

  • Zhang K, Shen M, Liu H, Shang S, Wang D, Liimatainen H (2018) Facile synthesis of palladium and gold nanoparticles by using dialdehyde nanocellulose as template and reducing agent. Carbohydr Polym 186:132–139. https://doi.org/10.1016/j.carbpol.2018.01.048

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2019) Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal. ACS Sustain Chem Eng 7:2998–3009

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Key Lab of Biomass Energy and Material of Jiangsu Province “Preparation and Adsorption Properties of MCB Materials Based on Pulp Fiber” [JSBEM-S-201909]; China Scholarship Council (CSC) scholarships, NSERC and the Canada Research Chairs program of the Government of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guigan Fang or Yonghao Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental information (DOCX 2624 kb)

Pd NPs@CNCC–AHB with different CNCC/AHB ratio (MP4 4312 kb)

AHB (left) and Pd NPs@CNCC-AHB (right) (MP4 2446 kb)

Continuous MB discoloration with cracked Pd NPs@CNCC–AHB hydrogel bead catalyst (AVI 133520 kb)

Micro-CT scanning of CNCC–AHB (MP4 20667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ran, M., Fang, G. et al. Palladium nano-catalyst supported on cationic nanocellulose–alginate hydrogel for effective catalytic reactions. Cellulose 27, 6995–7008 (2020). https://doi.org/10.1007/s10570-020-03127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03127-4

Keywords

Navigation