Skip to main content
Log in

Modification of cellulose nanocrystals by self-assembly nucleation agents to improve poly(L-lactide) nanocomposite’ properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The poor thermal stability of cellulose nano-crystals (CNCs) and dispersion in polymer matrices are significant obstacles limiting their applications in modification of polymers, especially during melt processing. The self-assembly nucleation agent, decamethylene dicarboxylic dibenzoyl hydrazide (TMC300), was used to modify CNCs via physical adsorption methods. Because TMC300 adsorbed on the surface of CNCs shields the sulfonate on CNCs, the thermal stability of CNCs was significantly improved. Meanwhile, modified CNCs formed different self-assembly morphologies in confined and unconfined spaces, which influenced the crystallization behaviors and microstructures of poly(L-lactide) (PLLA). It improved the crystallization rate of PLLA, which increased the crystallinities and heat resistances of PLLA/CNC composites. More importantly, the self-assembly nucleation agent induced the shish-kebab structures of PLLA, which enhanced the interfacial structure as mechanically interfacial lock and simultaneously improved tensile strength and toughness. This physical and economical modification method of CNCs is anticipated to take full advantage of CNCs to modify PLLA or other semi-crystalline polymers via melt processing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2
Fig. 13

Similar content being viewed by others

References

  • Abitbol T, Kloser E (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794

    CAS  Google Scholar 

  • Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914

    CAS  Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    CAS  PubMed  Google Scholar 

  • Azouz KB, Ramires EC, den Fonteyne WV, Kissi NE, Dufresne A (2013) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240

    Google Scholar 

  • Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecule 44:1233–1237

    CAS  Google Scholar 

  • Bao R, Chrisey DB (2010) Chemical states of carbon in amorphous boron carbide thin films deposited by radio frequency magnetron sputtering. Thin Solid Films 51:164–168

    Google Scholar 

  • Bashar MM, Zhu H, Yamamoto S, Mitsuishi M (2019) Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26:3671–3684

    CAS  Google Scholar 

  • Bhardwaj R, Mohanty AK (2007) Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8:2476–2484

    CAS  PubMed  Google Scholar 

  • Börjesson M, Sahlin K, Bernin D, Westman G (2017) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135:45963

    Google Scholar 

  • Boujemaoui A, Sanchez CC, Engström J, Bruce C, Fogelström L, Carlmark A, Malmström E (2017) Polycaprolactone nanocomposites reinforced with cellulose nanocrystals surface-modified via covalent grafting or physisorption: a comparative study. ACS Appl Mater Interfaces 9:35305–35318

    CAS  PubMed  Google Scholar 

  • Brinatti C, Huang J, Berry RM, Tam KC, Loh W (2016) Structural and energetic studies on the interaction of cationic surfactants and cellulose nanocrystals. Langmuir 32:689–698

    CAS  PubMed  Google Scholar 

  • Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohyd Polym 88:713–718

    CAS  Google Scholar 

  • Cheng M, Qin Z, Chen Y, Hu S, Ren Z, Zhu M (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5:4656–4664

    CAS  Google Scholar 

  • Choi JE, Park J, Park DW, Shim SE (2010) MWCNT–OH adsorbed electrospun nylon 6,6 nanofibers chemiresistor and their application in low molecular weight alcohol vapours sensing. Synth Met 160:2664–2669

    CAS  Google Scholar 

  • Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33

    CAS  PubMed  Google Scholar 

  • Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395

    CAS  Google Scholar 

  • Fang H, Chen X, Wang S, Cheng S, Ding Y (2019) Enhanced mechanical and oxygen barrier performance in biodegradable polyurethanes by incorporating cellulose nanocrystals with interfacial polylactide stereocomplexation. Cellulose 26:9751–9764

    CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    CAS  Google Scholar 

  • Gan L, Wang Y, Zhang M, Xia X, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Sci Bull 64:934–940

    CAS  Google Scholar 

  • Góis GS, Nepomuceno NC, França CHA, Almeida YMB, Hernandéz EP, Oliveira JF, Oliveira MP, Santo ASF (2019) Influence of morphology and dispersion stability of CNC modified with ethylene oxide derivatives on mechanical properties of PLLA-based nanocomposites. Polym Compos 40:399–408

    Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Mintz EA (2016) Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid). J Therm Anal Calorim 126:1243–1251

    CAS  Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5:1711–1720

    CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    CAS  PubMed  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540

    CAS  PubMed  Google Scholar 

  • He X, Li Y, Nie M, Wang Q (2016) Root-like glass fiber with branched fiber prepared via molecular self-assembly. RSC Adv 6:45492–45494

    CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A, Fourier UJ (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whisker. Part 1: processing and mechanical behavior. Polym Compos 17:604–611

    CAS  Google Scholar 

  • Huang P, Shi S, Liu Y, Nie M, Wang Q (2017) Root-like natural fibers in polypropylene prepared via directed diffusion and self-assembly driven byhydrogen bonding. RSC Adv 7:32193–32197

    CAS  Google Scholar 

  • Incarnato L, Acierno D, Russo P, Malinconico M, Laurienzo P (1999) Influence of composition on properties of nylon 6/EVOH blends. J Polym Sci Part B Polym Phys 37:2445–2455

    CAS  Google Scholar 

  • Jin X, Heepe L, Strueben J, Adelung R, Gorb SN, Staubitz A (2014) A Challenges and solutions for joining polymer materials. Macromol Rapid Commun 35:1551–1570

    CAS  PubMed  Google Scholar 

  • Kong W, Zhu B, Su F, Wang Z, Shao C, Wang Y, Liu C, Shen C (2019) Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer 168:77–85

    CAS  Google Scholar 

  • Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    CAS  Google Scholar 

  • Liu C, Jin R, Ouyang X, Wang Y (2017) Adsorption behavior of carboxylated cellulose nanocrystal-polyethyleneimine composite for removal of Cr(VI) ions. Appl Surf Sci 408:77–87

    CAS  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248

    CAS  Google Scholar 

  • Mano V, Chimenti S, Ruggrri G, Pereira FV, Oaula EL (2017) P(CL-b-LLA) diblock copolymers grafting onto cellulosic nanocrystals. Polym Bull 74:3673–3688

    CAS  Google Scholar 

  • Mariano M, Pilate F, Oliveira FB, Khelifa F (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montes S, Etxeberria A, Mocholi V, Rekondo A, Grande H, Labidi J (2018) Effect of combining cellulose nanocrystals and grapheme nanoplatelets on the properties of poly(lactic acid) based films. Exp Polym Lett 12:543–555

    CAS  Google Scholar 

  • Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules 35:2190–2199

    CAS  Google Scholar 

  • Nan F, Nagarajan S, Chen Y, Liu P, Duan Y, Meng Y, Zhang J (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem Eng 5:8951–8958

    CAS  Google Scholar 

  • Nie M, Kalyon DM, Fisher FT (2014) Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification. ACS Appl Mater Interf 6:14886–14893

    CAS  Google Scholar 

  • Pal N, Dubeyb P, Gopinathb P, Pal K (2017) Combined effect of cellulose nanocrystal and reduced graphene oxide into polylactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol 95:94–105

    CAS  PubMed  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    CAS  Google Scholar 

  • Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162

    CAS  PubMed  Google Scholar 

  • Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    CAS  PubMed  Google Scholar 

  • Samir MASA, Allein F, Gorecki W, Sanchez JY, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    CAS  Google Scholar 

  • Shi J, Liu W, Jiang X, Liu W (2019) Preparation of cellulose nanocrystal from tobacco-stem and its application in ethyl cellulose film as a reinforcing agent. Cellulose. https://doi.org/10.1007/s10570-019-02904-0(online)

    Article  Google Scholar 

  • Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: a new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci 135:46468

    Google Scholar 

  • Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels Bioprod Bioref 3:456–467

    CAS  Google Scholar 

  • Šturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    PubMed  Google Scholar 

  • Tan X, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    CAS  Google Scholar 

  • Voronova MI, Surov OV, Zakharov AG (2013) Nanocrystalline cellulose with various contents of sulfate groups. Carbohydr Polym 98:465–469

    CAS  PubMed  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    CAS  Google Scholar 

  • Wen L, Xin Z, Hu D (2010) A new route of manipulation of poly(L-lactic acid) crystallization by self-assembly of p-tert-butylcalix[8]arene and toluene. J Polym Sci Part B Polym Phys 48:1235–1243

    CAS  Google Scholar 

  • Xie Q, Wang S, Chen X, Zhou Y, Fang H, Li X, Cheng S, Ding Y (2018) Thermal stability and crystallization behavior of cellulos nanocrystals and their poly(L-lactide) nanocomposites: effects of surface ionic group and poly(D-lactide) grafting. Cellulose 25:6847–6862

    CAS  Google Scholar 

  • Yang J, Wang X, Liang R, Kong R, Sun Y, Tang J, Li L, Xue L, Chen Q (2018) Polymorphism, thermal stability and enzymatic degradation of poly(1,4-butylene adipate) tailored by a benzene-1,3,5-tricarboxamide-based nucleating agent. J Mater Sci 53:10569–10581

    CAS  Google Scholar 

  • Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49:463–471

    CAS  Google Scholar 

  • Zhao L, Li Q, Zhang R, Tian X, Liu L (2016) Effects of functionalized graphenes on the isothermal crystallization of poly(L-lactide) nanocomposites. Chin J Polym Sci 34:111–121

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation, China (Grant No. 51503117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifen Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Hu, Y., Tian, X. et al. Modification of cellulose nanocrystals by self-assembly nucleation agents to improve poly(L-lactide) nanocomposite’ properties. Cellulose 27, 4337–4353 (2020). https://doi.org/10.1007/s10570-020-03069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03069-x

Keywords

Navigation