Skip to main content
Log in

Cellulose-based, highly porous polyurethanes templated within non-aqueous high internal phase emulsions

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose is one of the most abundant resources in nature. Cellulose-based porous monoliths have been fabricated by direct drying of oil-in-water high internal phase emulsions (HIPEs) stabilized using either cellulose derivatives or surface-modified cellulose. The resulting cellulose-based porous polymers, however, were usually fragile, reflecting the lack of crosslinking. Herein, we report a new strategy to fabricate cellulose-based porous materials (polyurethane polyHIPEs, PU polyHIPEs) templated within non-aqueous HIPEs through the covalent crosslinking between isocyanates and unmodified cellulose. The PU polyHIPEs exhibited interconnected macroporous structures and exhibited tunable wettability from hydrophilicity/oleophilicity to hydrophobicity/oleophilicity. The PU polyHIPEs were able to absorb a wide variety of oils, exhibiting relatively large capacities and high absorption rates. We further showed that the PU polyHIPEs were robust, and they did not fail under compressive stress even at strains of 70%. The robustness, large absorption capacities, rapid absorption, and hydrophobicity/oleophilicity make these cellulose-based PU polyHIPEs suitable for oil absorption and/or oil–water separation applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barbara I, Dourges M-A, Deleuze H (2017) Preparation of porous polyurethanes by emulsion-templated step growth polymerization. Polymer 132:243–251

    CAS  Google Scholar 

  • Caldero G, Llinas M, Garcia-Celma MJ, Solans C (2010) Studies on controlled release of hydrophilic drugs from W/O high internal phase ratio emulsions. J Pharm Sci 99:701–711

    CAS  PubMed  Google Scholar 

  • Cameron NR, Sherrington DC (1996) Non-aqueous high internal phase emulsions preparation and stability. J Chem Soc Faraday Trans 92:1543–1547

    CAS  Google Scholar 

  • Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 14:291–296

    CAS  PubMed  Google Scholar 

  • Chuang FS (2007) Analysis of thermal degradation of diacetylene-containing polyurethane copolymers. Polym Degrad Stabil 9:1393–1407

    Google Scholar 

  • David D, Silverstein MS (2009) Porous polyurethanes synthesized within high internal phase emulsions. J Polym Sci A Polym Chem 47:5806–5814

    CAS  Google Scholar 

  • Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    CAS  Google Scholar 

  • Fischer S, Voigt W, Fischer K (1999) The behaviour of cellulose in hydrated melts of the composition LiX. nH2O (X = I, NO3, CH3COO, ClO4). Cellulose 6:213–219

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • Gui H, Zhang T, Guo Q (2018) Closed-cell, emulsion-templated hydrogels for latent heat storage applications. Polym Chem 9:3970–3973

    CAS  Google Scholar 

  • Gui H, Guan G, Zhang T, Guo Q (2019) Microphase-separated, hierarchical macroporous polyurethane from a nonaqueous emulsion-templated reactive block copolymer. Chem Eng J 365:369–377

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  • Halpern Y, Patai S (1969) Pyrolytic reactions of carbohydrates. Part VII. Simultaneous DTA–TGA study of the thermal decomposition of cellulose in vacuo. Isreal Chem 7:691–696

    CAS  Google Scholar 

  • Israel S, Gurevitch I, Silverstein MS (2015) Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers. Polymer 72:453–463

    CAS  Google Scholar 

  • Johnson DW, Sherborne C, Didsbury MP, Pateman C, Cameron NR, Claeyssens F (2013) Macrostructuring of emulsion-templated porous polymers by 3D laser patterning. Adv Mater 25:3178–3181

    CAS  PubMed  Google Scholar 

  • Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567

    CAS  PubMed  Google Scholar 

  • Kimmins SD, Cameron NR (2011) Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater 21:211–225

    CAS  Google Scholar 

  • Kovacic S, Mazaj M, Jeselnik M, Pahovnik D, Zagar E, Slugovc C, Logar NZ (2015) Synthesis and catalytic performance of hierarchically porous MIL-100(Fe)@polyHIPE hybrid membranes. Macromol Rapid Commun 36:1605–1611

    CAS  PubMed  Google Scholar 

  • Li Z, Wei X, Ming T, Wang J, Ngai T (2010) Dual templating synthesis of hierarchical porous silica materials with three orders of length scale. Chem Commun 46:8767–8769

    CAS  Google Scholar 

  • Lide DR (2005) Handbook of chemistry and physics, Internet version 2005. CRC Press, Boca Raton

    Google Scholar 

  • Liu J, Chen X, Wang P, Fu X, Liu K, Fang Y (2017a) Specially treated aramid fiber stabilized gel-emulsions: preparation of porous polymeric monoliths and highly efficient removing of airborne HCHO. Macromol Rapid Commun 38:1700270

    Google Scholar 

  • Liu S et al (2017b) High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths. J Mater Chem B 5:2671–2678

    CAS  PubMed  Google Scholar 

  • Masson JF, Manley RSJ (1991) Cellulose/poly(4-vinylpyridine) blends. Macromolecules 54:5914–5921

    Google Scholar 

  • Nalawade AC, Ghorpade RV, Shadbar S, Qureshi MS, Chavan NN, Khan AA, Ponrathnam S (2016) Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold. J Mater Chem B 4:450–460

    CAS  PubMed  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    CAS  Google Scholar 

  • Normatov J, Silverstein MS (2007) Porous interpenetrating network hybrids synthesized within high internal phase emulsions. Polymer 48:6648–6655

    CAS  Google Scholar 

  • Rajput SD, Hundiwale DG, Mahulikar PP, Gite VV (2014) Fatty acids based transparent polyurethane films and coatings. Prog Org Coat 77:1360–1368

    CAS  Google Scholar 

  • Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromoelcules 33:4094–4107

    Google Scholar 

  • Samanta A, Nandan B, Srivastava RK (2016) Morphology of electrospun fibers derived from high internal phase emulsions. J Colloid Interface Sci 471:29–36

    CAS  PubMed  Google Scholar 

  • Seibert GR, Benjaminson MA, Hoffman H (1978) A conjugate of cellulase with fluorescein isothiocyanate: a specific stain for cellulose. Biotech Histochem 53:103–106

    CAS  Google Scholar 

  • Silverstein MS (2014a) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55:304–320

    CAS  Google Scholar 

  • Silverstein MS (2014b) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39:199–234

    CAS  Google Scholar 

  • Silverstein MS (2017) Emulsion-templated polymers: contemporary contemplations. Polymer 126:261–282

    CAS  Google Scholar 

  • Tamai N, Tatsumi D, Matsumoto T (2004) Rheological properties and molecular structure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone. Biomacromolecules 5:422–432

    CAS  PubMed  Google Scholar 

  • Weinstock L, Sanguramath RA, Silverstein MS (2019) Encapsulating an organic phase change material within emulsion-templated poly(urethane urea)s. Polym Chem 10:1498–1507

    CAS  Google Scholar 

  • Williams JM, Wrobleski DA (1988) Spatial distribution of the phases in water-in-oil emulsions. open and closed microcellular foams from cross-linked polystyrene. Langmuir 4:656–662

    CAS  Google Scholar 

  • Yang B, Huang WM, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47:1348–1356

    CAS  Google Scholar 

  • Zhang H, Cooper AI (2002) Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem Mat 14:4017–4020

    CAS  Google Scholar 

  • Zhang T, Guo Q (2017) Continuous preparation of polyHIPE monoliths from ionomer-stabilized high internal phase emulsions (HIPEs) for efficient recovery of spilled oils. Chem Eng J 307:812–819

    CAS  Google Scholar 

  • Zhang T, Silverstein MS (2017) Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination. Polymer 126:386–394

    CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Google Scholar 

  • Zhang T, Wu Y, Xu Z, Guo Q (2014) Hybrid high internal phase emulsion (HIPE) organogels with oil separation properties. Chem Commun 50:13821–13824

    CAS  Google Scholar 

  • Zhang T, Xu Z, Guo Q (2016) Closed-cell and open-cell porous polymers from ionomer-stabilized high internal phase emulsions. Polym Chem 7:7469–7476

    CAS  Google Scholar 

  • Zhang T, Gui H, Xu Z, Zhao Y (2019a) Hydrophobic polyurethane polyHIPEs templated from mannitol within nonaqueous high internal phase emulsions for oil spill recovery. J Polym Sci Polym Chem 57:1315–1321

    CAS  Google Scholar 

  • Zhang T, Sanguramath R, Israel S, Silverstein MS (2019b) Emulsion templating: porous polymers and beyond. Macromoelcules 52:5445–5479

    CAS  Google Scholar 

  • Zhao H, Kwak J, Zhang Z, Brown H, Arey B, Holladay J (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd Polym 68:235–241

    CAS  Google Scholar 

  • Zhu Y, Zheng Y, Wang F, Wang A (2016) Monolithic supermacroporous hydrogel prepared from high internal phase emulsions (HIPEs) for fast removal of Cu2+ and Pb2+. Chem Eng J 284:422–430

    CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Natural Science Foundation of Jiangsu Province, China (BK20180847).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao or Michael S. Silverstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhao, Y. & Silverstein, M.S. Cellulose-based, highly porous polyurethanes templated within non-aqueous high internal phase emulsions. Cellulose 27, 4007–4018 (2020). https://doi.org/10.1007/s10570-020-03059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03059-z

Keywords