Skip to main content
Log in

Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel cyclic-shaped copolymer containing silicon and phosphorus, poly (tetramethylcyclosiloxyl spirocyclic pentaerythritol diphosphonate) (PCTSi) was successfully synthesized and characterized by Fourier transform infrared spectra (FT-IR), 1H and 13C nuclear magnetic resonance (1H NMR and 13C NMR) for the preparation of flame retardant and hydrophobic cotton fabrics. The surface morphology of treated cotton fabrics was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The thermal degradation and combustion properties of cotton fabrics before and after treatment were investigated by thermogravimetric (TG) analysis, limiting oxygen index (LOI) test, vertical burning test and cone calorimetry test. After treated with PCTSi, the LOI value of coton fabrics increased to 29.5%, which was significantly higher than untreated cotton fabrics and the LOI value remained at above of 26.0% after 20 washing times. In the vertical burning test, the PCTSi treated cotton fabrics showed no afterflame and afterglow with a minimum char length of 8.5 cm. Thermogravimetric analysis coupled with Fourier transform infrared analysis (TG-FTIR) results indicated that flame-retardant cotton fabrics released nonflammable gases and less flammable gases than the untreated cotton fabrics. X-ray diffraction analysis demonstrated that the crystal structures of the PCTSi-treated cotton were almost unaffected. According to the results of TG-FTIR, SEM, EDS, and analyses of char residues, the cyclic-shaped copolymer can significantly improve flame retardant performance of cotton fabric by promoting the generation of char layer and the release of noncombustible volatiles. The treated cotton fabrics showed excellent hydrophobic properties, which reached a contact angle (CA) of 150° compared with cotton fabrics without treatment. In addition, 119.18° of CA and 26.0% of LOI value can be maintained after 20 washing times.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Shandong Province (Grant Number ZR2018MEM026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaohong Dong or Zhou Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Dong, C., Zhang, Z. et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer. Cellulose 27, 3531–3549 (2020). https://doi.org/10.1007/s10570-020-03016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03016-w

Keywords

Navigation