Skip to main content
Log in

Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The diffusion mechanism of the urea aqueous solution in the viscose film is investigated by time-resolved attenuated total reflectance-Fourier transform infrared spectroscopy combining with perturbation correlation moving window technique. Two stages can be observed during the whole diffusion process: (1) water diffuses from urea aqueous solution into the viscose film, (2) urea and water diffuse simultaneously through the viscose film. Additionally, the diffusion curve of urea in the viscose film fits Fickian diffusion model, and the diffusion coefficients can be calculated accordingly. It is shown that the diffusion rate of urea slightly decreases with increasing concentration. Furthermore, considering the frequency shift of bands attributed to C–O stretching vibration (mainly –CH2–O(6)H groups) of cellulose, it is suggested that water molecules are the dominant component interacting with cellulose by first breaking the native hydrogen-bonding network in the amorphous region and then building new cellulose-water hydrogen bonds during the diffusion process. On the other hand, urea molecules merely decrease the diffusion mobility of aqueous solutions by immobilizing the water molecules and forming urea-water associations in the viscose film. Thus, it is inferred that urea molecules play an indirect role by influencing the mobility of water molecules rather than directly interacting with cellulose chain in the viscose film during diffusion. The results herein could provide guidance in the filed of urea’s function in reactive dye printing and cellulose dissolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16

    CAS  PubMed  Google Scholar 

  • Ahmed NS, Youssef Y, El-Shishtawy RM, Mousa A (2006) Urea/alkali-free printing of cotton with reactive dyes. Color Technol 122(6):324–328

    CAS  Google Scholar 

  • An AK, Guo J, Jeong S, Lee E-J, Tabatabai SAA, Leiknes T (2016) High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Res 103:362–371

    CAS  PubMed  Google Scholar 

  • Bakkas N, Bouteiller Y, Loutellier A, Perchard J, Racine S (1995) The water-methanol complexes. Matrix induced structural conversion of the 1-1 species. Chem Phys Lett 232((1–2)):90–98

    CAS  Google Scholar 

  • Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P-O, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19(1):1–12

    Google Scholar 

  • Carr J, Buchanan L, Schmidt J, Zanni M, Skinner J (2013) Structure and dynamics of urea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation. J Phys Chem B 117(42):13291–13300

    CAS  PubMed  Google Scholar 

  • Chen P, Nishiyama Y, Wohlert J, Lu A, Mazeau K, Ismail AE (2017) Translational entropy and dispersion energy jointly drive the adsorption of urea to cellulose. J Phys Chem B 121(10):2244–2251

    CAS  PubMed  Google Scholar 

  • Doumic LI, Soares PA, Ayude MA, Cassanello M, Boaventura RA, Vilar VJ (2015) Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chem Eng J 277:86–96

    CAS  Google Scholar 

  • Feng K, Hou L, Schoener CA, Wu P, Gao H (2015) Exploring the drug migration process through ethyl cellulose-based films from infrared-spectral insights. Eur J Pharm Biopharm 93:46–51

    CAS  PubMed  Google Scholar 

  • Fieldson G, Barbari T (1993) The use of FTi. r.-atr spectroscopy to characterize penetrant diffusion in polymers. Polymer 34(6):1146–1153

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    CAS  Google Scholar 

  • Grdadolnik J, Maréchal Y (2002) Urea and urea–water solutions—an infrared study. J Mol Struct 615(1–3):177–189

    CAS  Google Scholar 

  • Groen H, Roberts KJ (2004) An examination of the crystallization of urea from supersaturated aqueous and aqueous—methanol solutions as monitored in-process using ATR FTIR spectroscopy. Cryst Growth Des 4(5):930–936

    Google Scholar 

  • Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose–the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13(2):131–145

    CAS  Google Scholar 

  • Holm Kristensen J, Bampos N, Duer M (2004) Solid state 13C CP MAS NMR study of molecular motions and interactions of urea adsorbed on cotton cellulose. Phys Chem Chem Phys 6(12):3175–3183

    CAS  Google Scholar 

  • Hou L, Wu P (2019) Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr Polym 205:420–426

    CAS  PubMed  Google Scholar 

  • Hou L, Feng K, Wu P, Gao H (2014a) Investigation of water diffusion process in ethyl cellulose-based films by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional correlation analysis. Cellulose 21(6):4009–4017

    CAS  Google Scholar 

  • Hou L, Ma K, An Z, Wu P (2014b) Exploring the volume phase transition behavior of POEGA-and PNIPAM-based core–shell nanogels from infrared-spectral insights. Macromolecules 47(3):1144–1154

    CAS  Google Scholar 

  • Howlader P, Das P, Zangrando E, Mukherjee PS (2016) Urea-functionalized self-assembled molecular prism for heterogeneous catalysis in water. J Am Chem Soc 138(5):1668–1676

    CAS  PubMed  Google Scholar 

  • Hu E, Wu X, Shang S, Tao X-m, Jiang S-x, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718

    CAS  Google Scholar 

  • Idrissi A, Damay P, Yukichi K, Jedlovszky P (2008) Self-association of urea in aqueous solutions: a Voronoi polyhedron analysis study. J Chem Phys 129(16):164512

    PubMed  Google Scholar 

  • Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20(1):97–103

    CAS  Google Scholar 

  • Jiang Z et al (2014) Intermolecular interactions and 3D structure in cellulose–NaOH–urea aqueous system. J Phys Chem B 118(34):10250–10257

    CAS  PubMed  Google Scholar 

  • Jung YM, Czarnik-Matusewicz B, Kim SB (2004) Characterization of concentration-dependent infrared spectral variations of urea aqueous solutions by principal component analysis and two-dimensional correlation spectroscopy. J Phys Chem B 108(34):13008–13014

    CAS  Google Scholar 

  • Keuleers A, Desseyn HO, Rousseau B, Van Alsenoy C (1999) Vibrational analysis of urea. J Phys Chem A 103(24):4621–4630

    CAS  Google Scholar 

  • Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57

    CAS  Google Scholar 

  • Lai H, Wang Z, Wu P, Chaudhary BI, Sengupta SS, Cogen JM, Li B (2012) Structure and diffusion behavior of trioctyl trimellitate (TOTM) in PVC film studied by ATR-IR spectroscopy. Ind Eng Chem Res 51(27):9365–9375

    CAS  Google Scholar 

  • Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2):189–198

    CAS  Google Scholar 

  • Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1–3):183–196

    Google Scholar 

  • Morita S, Shinzawa H, Noda I, Ozaki Y (2006) Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Appl Spectrosc 60(4):398–406

    CAS  PubMed  Google Scholar 

  • Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391

    CAS  PubMed  Google Scholar 

  • Oliver KV, Marechal A, Rich PR (2016) Effects of the hydration state on the mid-infrared spectra of urea and creatinine in relation to urine analyses. Appl Spectrosc 70(6):983–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezus YLA, Bakker HJ (2006) Effect of urea on the structural dynamics of water. Proc Natl Acad Sci USA 103(49):18417–18420

    CAS  PubMed  Google Scholar 

  • Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS (2009) Investigating the hydrogen-bonding model of urea denaturation. J Am Chem Soc 131(26):9304–9310

    CAS  PubMed  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17(1):103–115

    Google Scholar 

  • Soares PA, Batalha M, Souza SMGU, Boaventura RA, Vilar VJ (2015) Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater. J Environ Manag 152:120–131

    CAS  Google Scholar 

  • Stumpe MC, Grubmueller H (2007) Aqueous urea solutions: structure, energetics, and urea aggregation. J Phys Chem B 111(22):6220–6228

    CAS  PubMed  Google Scholar 

  • Sun S, Wu P (2012) On the thermally reversible dynamic hydration behavior of oligo (ethylene glycol) methacrylate-based polymers in water. Macromolecules 46(1):236–246

    Google Scholar 

  • Sun C, Xue D (2015) IR spectral study of mesoscale process during urea crystallization from aqueous solution. Cryst Growth Des 15(6):2867–2873

    CAS  Google Scholar 

  • Tomé LC et al (2011) Preparation and evaluation of the barrier properties of cellophane membranes modified with fatty acids. Carbohydr Polym 83(2):836–842

    Google Scholar 

  • Volz N, Clayden J (2011) The urea renaissance. Angew Chem Int Ed 50(51):12148–12155

    CAS  Google Scholar 

  • Wang M, Wu P, Sengupta SS, Chadhary BI, Cogen JM, Li B (2011) Investigation of water diffusion in low-density polyethylene by attenuated total reflectance fourier transform infrared spectroscopy and two-dimensional correlation analysis. Ind Eng Chem Res 50(10):6447–6454

    CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    CAS  Google Scholar 

  • Wang L, Yan K, Hu C (2017) Cleaner production of inkjet printed cotton fabrics using a urea-free ecosteam process. J Clean Prod 143:1215–1220

    CAS  Google Scholar 

  • Xie K, Gao A, Li M, Wang X (2014) Printing properties of the red reactive dyes with different number sulfonate groups on cotton fabric. Carbohydr Polym 101:666–670

    CAS  PubMed  Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21(3):1183–1192

    CAS  Google Scholar 

  • Zhang H, Gao A, Song X, Hou A (2016) Cleaner production applied to urea-free printing of cotton fabrics using polyethylene glycol polymers as alternative additives. J Clean Prod 124:126–131

    CAS  Google Scholar 

  • Zhao D et al (2019) Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydr Polym 204:247–254

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Science Foundation of China (NSFC) (No. 21803010, 51733003), Shanghai Sailing Program (18YF1401100), National Postdoctoral Program for Innovative Talents (BX201700048), China Postdoctoral Science Foundation (2018M631979), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Hou, L. & Wu, P. Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy. Cellulose 27, 2403–2415 (2020). https://doi.org/10.1007/s10570-020-02997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-02997-y

Keywords

Navigation