Skip to main content

Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs

Abstract

The goal of this work was to synthesize hybrid thin films prepared combining polyamide-6 (N6) and microcellulose (CE) at various weight ratios. Products exhibited improved mechanical properties, temperature-tunable hydrophilicity, and antimicrobial features. The obtained N6@CE films were grafted with N-vinylcaprolactam (NVCL) using gamma-rays, providing temperature responsiveness in a range of 37–38 °C. The grafting degree was studied as a function of CE percentage on the film, monomer concentration, and absorbed dose. The grafting degree increased with the percentage of CE on the film, and the maximum grafting was achieved at monomer concentration and the irradiation dose of 20% NVCL and 20 kGy, respectively. NVCL grafting was confirmed by SEM, 13C-CPMAS NMR, FTIR-ATR, and XPS. SEM images attested formation of nanopores on the structure, caused by the grafting process, that consequently triggering on the new characteristics of the final materials. Potential performance of the composites as wound dressings was investigated in terms of their capability to loading and release of antimicrobial agents, such as vancomycin and benzalkonium chloride. NVCL grafting enhanced the uptake of both drugs, especially benzalkonium chloride, and regulated their release demonstrating antimicrobial effectiveness against Staphylococcus aureus.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abdal-hay A, Hamdy AS, Khalil KA (2015) Fabrication of durable high performance hybrid nanofiber scaffolds for bone tissue regeneration using a novel, simple in situ deposition approach of polyvinyl alcohol on electrospun nylon 6 nanofibers. Mater Lett 147:25–28. https://doi.org/10.1016/j.matlet.2015.02.005

    CAS  Article  Google Scholar 

  2. Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33:5967–5982. https://doi.org/10.1016/j.biomaterials.2012.05.031

    CAS  Article  PubMed  Google Scholar 

  3. Cai T, Li M, Zhang B et al (2014) Hyperbranched polycaprolactone-click-poly(N-vinylcaprolactam) amphiphilic copolymers and their applications as temperature-responsive membranes. J Mater Chem B 2:814–825. https://doi.org/10.1039/C3TB20752H

    CAS  Article  Google Scholar 

  4. Cappannella E, Benucci I, Lombardelli C et al (2016) Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: bench-scale fluidized-bed reactor study. Food Chem 210:49–55. https://doi.org/10.1016/j.foodchem.2016.04.089

    CAS  Article  PubMed  Google Scholar 

  5. Cedillo G, Bucio E (2015) Solid state NMR analysis of two grafted biopolymers. MRS Proc 1767:113–118. https://doi.org/10.1557/opl.2015.234

    CAS  Article  Google Scholar 

  6. Cortez-Lemus NA, Licea-Claverie A (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51. https://doi.org/10.1016/j.progpolymsci.2015.08.001

    CAS  Article  Google Scholar 

  7. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

  8. Dubovik AS, Makhaeva EE, Grinberg VY, Khokhlov AR (2005) Energetics of cooperative transitions of N-vinylcaprolactam polymers in aqueous solutions. Macromol Chem Phys 206:915–928. https://doi.org/10.1002/macp.200400554

    CAS  Article  Google Scholar 

  9. Flores-Rojas GG, López-Saucedo F, Bucio E (2018) Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2018.08.011

    Article  Google Scholar 

  10. Flores-Rojas GG, Pino-Ramos VH, López-Saucedo F et al (2017) Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-co-glycidylmethacrylate). Eur Polym J 95:27–40. https://doi.org/10.1016/j.eurpolymj.2017.07.040

    CAS  Article  Google Scholar 

  11. Fusco NM, Meaney CJ, Wells C et al (2018) Vancomycin versus vancomycin plus rifampin for the treatment of acute pulmonary exacerbations of cystic fibrosis. J Pediatr Pharmacol Ther 23:125–131. https://doi.org/10.5863/1551-6776-23.2.125

    Article  PubMed  PubMed Central  Google Scholar 

  12. García-Vargas M, González-Chomón C, Magariños B et al (2014) Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm 461:286–295. https://doi.org/10.1016/j.ijpharm.2013.11.060

    CAS  Article  PubMed  Google Scholar 

  13. Harding JL, Reynolds MM (2014) Combating medical device fouling. Trends Biotechnol 32:140–146. https://doi.org/10.1016/j.tibtech.2013.12.004

    CAS  Article  PubMed  Google Scholar 

  14. Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ et al (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19:2165–2177. https://doi.org/10.1007/s10570-012-9782-5

    CAS  Article  Google Scholar 

  15. Jabur AR (2017) Antibacterial activity and heavy metal removal efficiency of electrospun medium molecular weight chitosan/nylon-6 nanofibre membranes. Biomed Mater 13:15010. https://doi.org/10.1088/1748-605x/aa9256

    CAS  Article  Google Scholar 

  16. Ji Y, Zhu M, Gong Y et al (2017) Thermoresponsive polymers with lower critical solution temperature- or upper critical solution temperature-type phase behaviour do not induce toxicity to human endothelial cells. Basic Clin Pharmacol Toxicol 120:79–85. https://doi.org/10.1111/bcpt.12643

    CAS  Article  PubMed  Google Scholar 

  17. Joshi MK, Tiwari AP, Maharjan B et al (2016) Cellulose reinforced nylon-6 nanofibrous membrane: fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization. Carbohydr Polym 147:104–113. https://doi.org/10.1016/j.carbpol.2016.02.056

    CAS  Article  PubMed  Google Scholar 

  18. Kiziltas A, Gardner DJ, Han Y, Yang H-S (2014) Mechanical properties of microcrystalline cellulose (MCC) filled engineering thermoplastic composites. J Polym Environ 22:365–372. https://doi.org/10.1007/s10924-014-0676-5

    CAS  Article  Google Scholar 

  19. Kiziltas EE, Yang H-S, Kiziltas A et al (2016) Thermal analysis of polyamide 6 composites F filled by natural fiber blend. Bioresources. https://doi.org/10.15376/biores.11.2.4758-4769

    Article  Google Scholar 

  20. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    CAS  Article  Google Scholar 

  21. Kozanoǧlu S, Özdemir T, Usanmaz A (2011) Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam). J Macromol Sci Part A 48:467–477. https://doi.org/10.1080/10601325.2011.573350

    CAS  Article  Google Scholar 

  22. Li H, Liu K, Williams GR et al (2018) Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids Surf B Biointerfaces 171:142–149. https://doi.org/10.1016/j.colsurfb.2018.07.020

    CAS  Article  PubMed  Google Scholar 

  23. Liu J, Detrembleur C, Hurtgen M et al (2014) Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core–corona nanoparticles as a drug delivery system. Polym Chem 5:5289–5299. https://doi.org/10.1039/C4PY00352G

    CAS  Article  Google Scholar 

  24. López CM, Pich A (2018) Supramolecular stimuli-responsive microgels crosslinked by tannic acid. Macromol Rapid Commun 39:1700808. https://doi.org/10.1002/marc.201700808

    CAS  Article  Google Scholar 

  25. Luna-Straffon MA, Cedillo G, Bucio E (2012) Radiation-grafting of cotton-g-DMAEMA for biomedical applications. MRS Proc. https://doi.org/10.1557/opl.2012.1621

    Article  Google Scholar 

  26. Makhaeva EE, Tenhu H, Khokhlov AR (1998) Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118. https://doi.org/10.1021/ma980158s

    CAS  Article  Google Scholar 

  27. Ortega A, Bucio E, Burillo G (2008) New interpenetrating polymer networks of N-isopropylacrylamide/N-acryloxysuccinimide: synthesis and characterization. Polym Bull 60:515–524. https://doi.org/10.1007/s00289-007-0870-x

    CAS  Article  Google Scholar 

  28. Parodi E, Peters GWM, Govaert LE (2018) Prediction of plasticity-controlled failure in polyamide 6: influence of temperature and relative humidity. J Appl Polym Sci 135:45942. https://doi.org/10.1002/app.45942

    CAS  Article  Google Scholar 

  29. Pino-Ramos VH, Flores-Rojas GG, Alvarez-Lorenzo C et al (2018) Graft copolymerization by ionization radiation, characterization, and enzymatic activity of temperature-responsive SR-g-PNVCL loaded with lysozyme. React Funct Polym 126:74–82. https://doi.org/10.1016/j.reactfunctpolym.2018.03.002

    CAS  Article  Google Scholar 

  30. Rao MK, Rao SK, Ha C-S (2016) Stimuli responsive poly(vinyl caprolactam) gels for biomedical applications. Gels 2:6–24. https://doi.org/10.3390/gels2010006

    CAS  Article  PubMed Central  Google Scholar 

  31. Schroeder R (2018) Microgels for long-term storage of vitamins for extended spaceflight. Life Sci Sp Res 16:26–37. https://doi.org/10.1016/j.lssr.2017.10.003

    CAS  Article  Google Scholar 

  32. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45. https://doi.org/10.1016/j.carbpol.2010.04.018

    CAS  Article  Google Scholar 

  33. Shi R, Tan L, Zong L et al (2017) Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydr Polym 157:1594–1603. https://doi.org/10.1016/j.carbpol.2016.11.034

    CAS  Article  PubMed  Google Scholar 

  34. Shrestha BK, Mousa HM, Tiwari AP et al (2016) Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydr Polym 148:107–114. https://doi.org/10.1016/j.carbpol.2016.03.094

    CAS  Article  PubMed  Google Scholar 

  35. Sreevidya VS, Lenz KA, Svoboda KR, Ma H (2018) Benzalkonium chloride, benzethonium chloride, and chloroxylenol—three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. Environ Pollut 235:814–824. https://doi.org/10.1016/j.envpol.2017.12.108

    CAS  Article  PubMed  Google Scholar 

  36. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039

    CAS  Article  PubMed  Google Scholar 

  37. Tian M, Qu L, Zhang X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462. https://doi.org/10.1016/j.carbpol.2014.05.016

    CAS  Article  PubMed  Google Scholar 

  38. Wang S, Peng X, Zhong L et al (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781. https://doi.org/10.1039/C4TA07057G

    CAS  Article  Google Scholar 

  39. Wang J, Qin L, Lin J et al (2017a) Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Chem Eng J 323:56–63. https://doi.org/10.1016/j.cej.2017.04.089

    CAS  Article  Google Scholar 

  40. Wang L-F, Shankar S, Rhim J-W (2017b) Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208. https://doi.org/10.1016/j.foodhyd.2016.08.041

    CAS  Article  Google Scholar 

  41. Wu J-Y, Liu S-Q, Heng PW-S, Yang Y-Y (2005) Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Control Release 102:361–372. https://doi.org/10.1016/j.jconrel.2004.10.008

    CAS  Article  PubMed  Google Scholar 

  42. Xu S, Yi S, He J et al (2017) Preparation and properties of a novel microcrystalline cellulose-filled composites based on polyamide 6/high-density polyethylene. Materials (Basel) 10:808–819. https://doi.org/10.3390/ma10070808

    CAS  Article  PubMed Central  Google Scholar 

  43. Zhang K, Zong L, Tan Y et al (2016) Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 136:121–127. https://doi.org/10.1016/j.carbpol.2015.09.026

    CAS  Article  PubMed  Google Scholar 

  44. Zhou Y, Jin Q, Zhu T, Akama Y (2011) Adsorption of chromium (VI) from aqueous solutions by cellulose modified with β-CD and quaternary ammonium groups. J Hazard Mater 187:303–310. https://doi.org/10.1016/j.jhazmat.2011.01.025

    CAS  Article  PubMed  Google Scholar 

  45. Zhuang S, Yin Y, Wang J (2018) Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl Eng Technol 50:211–215. https://doi.org/10.1016/j.net.2017.11.007

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank to DGAPA and CONACYT (CVU: G. G. Flores-Rojas 407270 & F. López-Saucedo 409872). This work was supported by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México under Grant IN202320 (Mexico), the Spanish MINECO [SAF2017-83118-R], Agencia Estatal de Investigación (AEI) Spain, Xunta de Galicia [ED431C 2016/008; AEMAT ED431E 2018/08], FEDER, and Interreg V-A POCTEP Program [0245_IBEROS_1_E].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. G. Flores-Rojas or E. Bucio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flores-Rojas, G.G., López-Saucedo, F., Vázquez, E. et al. Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs. Cellulose 27, 2785–2801 (2020). https://doi.org/10.1007/s10570-020-02986-1

Download citation

Keywords

  • Cellulose microparticles
  • Temperature responsiveness
  • Gamma-radiation
  • N-vinylcaprolactam
  • Polyamide-6
  • Antimicrobial activity