Abstract
Bacterial cellulose (BC) membrane can be architected to covalently immobilize biomolecules, generating materials with new functionality. The processes of purification (via alkaline treatment) and chemical modification (via NaIO4) to the wet BC membrane is the innovation of this work. This wet oxidized BC (OxBC) membrane could act as a support matrix for covalent immobilization of enzymes. BC produced over 5 days of static fermentation, followed by purification with K2CO3 (BC-5d-K2CO3) was selected for our study due to high porosity and surface area, which are properties that favor its chemical modification. This wet BC membrane proven suitable for NaIO4 oxidation. Time and temperature conditions were evaluated in the oxidation reaction, with oxidation BC (OxBC) performed at 1% (w/v) NaIO4 for 6 h at 55 °C under most advantageous conditions, as it provided 50% oxidation degree and preserved its morphological structure. BC and OxBC were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Scanning electron microscopy, mechanical test, and thermal analysis. The oxidation reaction decreased BC crystallinity, tensile strength, and thermal stability and compacted the cellulose layers. BC and OxBC showed non-cytotoxicity. Fourier transform infrared confirmed that OxBC can covalently immobilize papain and that after immobilization the enzyme showed a recovered enzymatic activity of 93.1%. In addition, the oxidized membrane presented greater amount of immobilized papain in its study than BC, proving to be a more efficient support for enzymatic immobilization.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- BC:
-
Bacterial cellulose
- DAC:
-
Dialdehyde cellulose
- IUPAC:
-
International Union of Pure and Applied Chemistry
- PC:
-
Plant cellulose
- OxBC:
-
Oxidized bacterial cellulose
References
Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269(3):221–232. https://doi.org/10.1007/BF00406415
Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84(22):9729–9737. https://doi.org/10.1021/ac301110d
Alpay P, Uygun DA (2015) Usage of immobilized papain for enzymatic hydrolysis of proteins. J Mol Catal B Enzym 111:56–63. https://doi.org/10.1016/j.molcatb.2014.11.001
Barbosa RFS, Souza AG, Ferreira FF, Rosa DS (2019) Isolation and acetylation of cellulose nanostructures with a homogeneous system. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2019.04.072
Bilgi E, Bayir E, Sendemir-Urkmez A, Hames EE (2016) Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int J Biol Macromol 90:2–10. https://doi.org/10.1016/j.ijbiomac.2016.02.052
Bodin A, Bäckdahl H, Petersen N, Gatenholm P (2011) Bacterial cellulose as biomaterial. Compr Biomater 2:405–410. https://doi.org/10.1016/B978-0-08-100691-7.00034-3
Bora U, Kannan K, Nahar P (2005) A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules. J Membr Sci 250(1–2):215–222. https://doi.org/10.1016/j.memsci.2004.10.028
Bora U, Sharma P, Kannan K, Nahar P (2006) Photoreactive cellulose membrane-A novel matrix for covalent immobilization of biomolecules. J Biotechnol 126(2):220–229. https://doi.org/10.1016/j.jbiotec.2006.04.013
Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Castro GR (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. Doi: https://doi.org/10.1016/j.biortech.2016.02.071
Cao Z, Shen Z, Luo X, Zhang H, Liu Y, Cai N, Yu F (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohyd Polym 166:320–328. https://doi.org/10.1016/j.carbpol.2017.03.012
Carneiro-da-Cunha MG, Rocha JMS, Garcia FAP, Gil MH (1999) Lipase immobilisation on to polymeric membranes. Biotechnol Tech 13(6):403–409. https://doi.org/10.1023/A:1008913824571
Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polymers 84(1):96–102. https://doi.org/10.1016/j.carbpol.2010.10.072
Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocolloids 53:75–83. https://doi.org/10.1016/J.FOODHYD.2014.12.009
Chemin M, Rakotovelo A, Ham-Pichavant F, Chollet G, Da Silva Perez D, Petit-Conil M, Grelier S (2016) Periodate oxidation of 4-O-methylglucuronoxylans: influence of the reaction conditions. Carbohyd Polym 142:45–50. https://doi.org/10.1016/j.carbpol.2016.01.025
Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. In Carbohydrate Polymers, vol 93, pp 207–215. Elsevier. https://doi.org/10.1016/j.carbpol.2012.03.086
Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay—casein as a substrate. J Vis Exp. https://doi.org/10.3791/899
de Barbosa ALC (2008) Espectroscopia no infravermelho na caracterização de compostos orgânicos. Universidade Federal de Viçosa. https://doi.org/10.1590/S0100-40422012000600018
de Carvalho MM, de Freitas RA, Ducatti DRB, Ferreira LG, Gonçalves AG, Colodi FG, Duarte MER (2018) Modification of ulvans via periodate-chlorite oxidation: chemical characterization and anticoagulant activity. Carbohyd Polym 197:631–640. https://doi.org/10.1016/j.carbpol.2018.06.041
Di Z, Shi Z, Ullah MW, Li S, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int J Biol Macromol 105:638–644. https://doi.org/10.1016/j.ijbiomac.2017.07.075
Do Nascimento ES, Lima HLS, Barroso MKDA, Brígida AIS, Andrade FK, Borges MDF, Rosa MDF (2016) Mesquite extract is an alternative nutrient source for bacterial cellulose production. J Biobased Mater Bioenergy 10(1):63–70. https://doi.org/10.1166/jbmb.2016.1568
Drozd R, Rakoczy R, Konopacki M, Frąckowiak A, Fijałkowski K (2017) Evaluation of usefulness of 2DCorr technique in assessing physicochemical properties of bacterial cellulose. Carbohyd Polym 161:208–218. https://doi.org/10.1016/j.carbpol.2016.12.063
Drozd R, Rakoczy R, Wasak A, Junka A, Fijałkowski K (2018) The application of magnetically modified bacterial cellulose for immobilization of laccase. Int J Biol Macromol 108:462–470. https://doi.org/10.1016/J.IJBIOMAC.2017.12.031
Dutra JAP, Carvalho SG, Zampirolli ACD, Daltoé RD, Teixeira RM, Careta FP, Villanova JCO (2017) Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: preparation and preliminary evaluation. Eur J Pharm Biopharm 113:11–23. https://doi.org/10.1016/j.ejpb.2016.12.001
Estevinho BN, Samaniego N, Talens-Perales D, Fabra MJ, López-Rubio A, Polaina J, Marín-Navarro J (2018) Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered β-galactosidase. Int J Biol Macromol 115:476–482. https://doi.org/10.1016/j.ijbiomac.2018.04.081
Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohyd Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol.2016.06.062
Feng YH, Li JC, Lin Q, Wang X Bin, Wu ZX, Pang SJ, Sun ZL (2007) Crystallinity and Thermal Decomposition of Dialdehyde Celluloses from Bacterial Cellulose. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/kem.330-332.1289
French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24(11):4605–4609. https://doi.org/10.1007/s10570-017-1450-3
Fuller ME, Andaya C, McClay K (2018) Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J Microbiol Methods 144:145–151. https://doi.org/10.1016/j.mimet.2017.10.017
Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Biores Technol 102(19):9105–9110. https://doi.org/10.1016/j.biortech.2011.04.077
George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194. https://doi.org/10.1016/j.ijbiomac.2005.10.007
Grahame R, Holt PJL (1969) The Influence of Ageing on the in vivo Elasticity of Human Skin. Gerontology 15:121–139. https://doi.org/10.1159/000211681
Gurung S, Škalko-Basnet N (2009) Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. J Ethnopharmacol 121(2):338–341. https://doi.org/10.1016/j.jep.2008.10.030
Halib N, Ahmad I, Grassi M, Grassi G (2019) The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int J Pharm 566:631–640. https://doi.org/10.1016/j.ijpharm.2019.06.017
Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345
Homaei A, Samari F (2017) Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes. Int J Biol Macromol 105:1630–1635. https://doi.org/10.1016/j.ijbiomac.2017.02.038
Hoque J, Konai MM, Sequeira SS, Samaddar S, Haldar J (2016) Antibacterial and Antibiofilm Activity of Cationic Small Molecules with Spatial Positioning of Hydrophobicity: an in Vitro and in Vivo Evaluation. J Med Chem 59(23):10750–10762. https://doi.org/10.1021/acs.jmedchem.6b01435
Jackson EL, Hudson CS (1937) Application of the Cleavage Type of Oxidation by Periodic Acid to Starch and Cellulose. J Am Chem Soc 10(59):2049–2050. https://doi.org/10.1021/ja01289a077
Keshk SMAS, Ramadan AM, Bondock S (2015) Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.03.038
Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate Oxidation of Crystalline Cellulose. Biomacromol 1(3):488–492. https://doi.org/10.1021/bm0000337
Kim TS, Patel SKS, Selvaraj C, Jung WS, Pan CH, Kang YC, Lee JK (2016) A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Scientific Reports 6:33438. https://doi.org/10.1038/srep33438
Kumar Varma CA, Koley RK, Singh S, Sen AK, Kumar KJ (2016) Homogeneous carboxymethylated orange pulp cellulose: characterization and evaluation in terms of drug delivery. Int J Biol Macromol 93:1141–1146. https://doi.org/10.1016/j.ijbiomac.2016.09.084
Kumar V, Yang T (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose—Preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohyd Polym 48(4):403–412. https://doi.org/10.1016/S0144-8617(01)00290-9
Kumari S, Chauhan GS, Ahn JH, Reddy NS (2016) Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization. Int J Biol Macromol 85:227–237. https://doi.org/10.1016/j.ijbiomac.2015.12.063
Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng, C 29(5):1635–1642. https://doi.org/10.1016/j.msec.2009.01.006
Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohyd Polym 84(3):881–886. https://doi.org/10.1016/j.carbpol.2010.12.026
Lima HLS, Nascimento ES, Andrade FK, Brígida AIS, Borges MF, Cassales AR, Rosa MDF (2017) Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice—an agroindustry waste. Braz J Chem Eng 34(3):671–680. https://doi.org/10.1590/0104-6632.20170343s20150514
Lin SP, Loira Calvar I, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose. Springer, Netherlands. https://doi.org/10.1007/s10570-013-9994-3
Liu Y, Chen JY (2016) Enzyme immobilization on cellulose matrixes. J Bioact Compat Polymers 31(6):553–567. https://doi.org/10.1177/0883911516637377
Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohyd Polym 90(1):218–223. https://doi.org/10.1016/j.carbpol.2012.05.027
Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-21174-7
López Durán V, Larsson PA, Wågberg L (2018) Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohyd Polym 182:1–7. https://doi.org/10.1016/j.carbpol.2017.11.006
Machado RTA, Meneguin AB, Sábio RM, Franco DF, Antonio SG, Gutierrez J, Barud HS (2018) Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind Crops Prod 122:637–646. https://doi.org/10.1016/j.indcrop.2018.06.048
Maekawa E, Koshijima T (1991) Preparation and structural consideration of nitrogen containing derivatives obtained from dialdehyde celluloses. J Appl Polym Sci 42(1):169–178. https://doi.org/10.1002/app.1991.070420120
Manschot JFM, Brakkee AJM (1986) The measurement and modelling of the mechanical properties of human skin in vivo-I. The measurement. J Biomech 19(7):511–515. https://doi.org/10.1016/0021-9290(86)90124-7
Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35(3):191–201. https://doi.org/10.1007/s002260100097
Meza-Contreras JC, Manriquez-Gonzalez R, Gutiérrez-Ortega JA, Gonzalez-Garcia Y (2018) XRD and solid state13C-NMR evaluation of the crystallinity enhancement of13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: a comparative strategy of analyses. Carbohyd Res 461:51–59. https://doi.org/10.1016/j.carres.2018.03.005
Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141. https://doi.org/10.1016/j.carbpol.2014.02.012
Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohyd Polym 82(3):976–981. https://doi.org/10.1016/j.carbpol.2010.06.028
Nirmalanandhan VS, Rao M, Shearn JT, Juncosa-Melvin N, Gooch C, Butler DL (2008) Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech 41(4):822–828. https://doi.org/10.1016/j.jbiomech.2007.11.009
Pahlevan M, Toivakka M, Alam P (2018) Mechanical properties of TEMPO-oxidised bacterial cellulose-amino acid biomaterials. Eur Polymer J 101:29–36. https://doi.org/10.1016/j.eurpolymj.2018.02.013
Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30(5):599–606. https://doi.org/10.1016/j.medengphy.2007.06.011
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10. https://doi.org/10.1186/1754-6834-3-10
Patel SKS, Choi SH, Kang YC, Lee JK (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8(12):6728–6738. https://doi.org/10.1039/c6nr00346j
Patel SKS, Choi SH, Kang YC, Lee JK (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9(3):2213–2222. https://doi.org/10.1021/acsami.6b05165
Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Thomson Learning Inc., Boston
Pigaleva MA, Bulat MV, Gromovykh TI, Gavryushina IA, Lutsenko SV, Gallyamov MO, Kiselyova OI (2019) A new approach to purification of bacterial cellulose membranes: what happens to bacteria in supercritical media? J Supercrit Fluids 147:59–69. https://doi.org/10.1016/j.supflu.2019.02.009
Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stab 96(4):679–685. https://doi.org/10.1016/j.polymdegradstab.2010.12.007
Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng, C 59:303–309. https://doi.org/10.1016/J.MSEC.2015.10.016
Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2017.12.012
Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohyd Polym 116:173–181. https://doi.org/10.1016/j.carbpol.2014.03.064
Sathish SK, Vitta S (2019) Bacterial cellulose based nanocomposites for electronic and energy applications. In: Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.11489-4
Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-raydiffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003
Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2013.08.018
Shao W, Wu J, Liu H, Ye S, Jiang L, Liu X (2017) Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohyd Polym 178:270–276. https://doi.org/10.1016/j.carbpol.2017.09.045
Sheng W, Xi Y, Zhang L, Ye T, Zhao X (2018) Enhanced activity and stability of papain by covalent immobilization on porous magnetic nanoparticles. Int J Biol Macromol 114:143–148. https://doi.org/10.1016/j.ijbiomac.2018.03.088
Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids. Elsevier. https://doi.org/10.1016/j.foodhyd.2013.07.012
Shim H, Karina M, Yudianti R, Indrarti L, Azuma J, ichi J, Uyama H (2015) One-sided surface modification of bacterial cellulose sheet as 2,3-dialdehyde. Polym Plast Technol Eng 54(3):305–309. https://doi.org/10.1080/03602559.2014.977428
Singh TP, Siddiqi RA, Sogi DS (2019) Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT 99:77–83. https://doi.org/10.1016/j.lwt.2018.09.014
Sirvio J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohyd Polym 83(3):1293–1297. https://doi.org/10.1016/j.carbpol.2010.09.036
Song JE, Kim HR (2019) Bacterial cellulose as promising biomaterial and its application. In Advances in textile biotechnology. Woodhead Publishing, pp 263–277. https://doi.org/10.1016/b978-0-08-102632-8.00011-6
Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnology Advances. Elsevier. https://doi.org/10.1016/j.biotechadv.2015.07.009
Sun F, Nordli HR, Pukstad B, Kristofer Gamstedt E, Chinga-Carrasco G (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384. https://doi.org/10.1016/j.jmbbm.2017.01.049
Sun B, Zhang Y, Li W, Xu X, Zhang H, Zhao Y, Sun D (2019) Facile synthesis and light-induced antibacterial activity of ketoprofen functionalized bacterial cellulose membranes. Colloids Surf A 568:231–238. https://doi.org/10.1016/j.colsurfa.2019.01.051
Tabarsa T, Sheykhnazari S, Ashori A, Mashkour M, Khazaeian A (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340. https://doi.org/10.1016/j.ijbiomac.2017.03.108
Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26(1):125–131. https://doi.org/10.1007/s11274-009-0151-y
Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohyd Polym 208:314–322. https://doi.org/10.1016/j.carbpol.2018.12.080
Tian D, Shen F, Hu J, Renneckar S, Saddler JN (2018) Enhancing bacterial cellulose production via adding mesoporous halloysite nanotubes in the culture medium. Carbohyd Polym 198:191–196. https://doi.org/10.1016/j.carbpol.2018.06.026
Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A 296(1–3):76–85. https://doi.org/10.1016/j.colsurfa.2006.09.026
Torgbo S, Sukyai P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Elsevier, Applied Materials Today. https://doi.org/10.1016/j.apmt.2018.01.004
Torres FG, Arroyo JJ, Troncoso OP (2019) Bacterial cellulose nanocomposites: an all-nano type of material. Materials Science and Engineering C. Elsevier, Amsterdam. https://doi.org/10.1016/j.msec.2019.01.064
Urbina L, Corcuera MÁ, Eceiza A, Retegi A (2019) Stiff all-bacterial cellulose nanopaper with enhanced mechanical and barrier properties. Mater Lett 246:67–70. https://doi.org/10.1016/j.matlet.2019.03.005
van Zyl EM, Coburn JM (2019) Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Current Opinion in Chemical Engineering. Elsevier. https://doi.org/10.1016/j.coche.2019.04.005
Varavinit S, Chaokasem N, Shobsngob S (2001) Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17(7):721–725. https://doi.org/10.1023/A:1012984802624
Veelaert S, De Wit D, Gotlieb KF, Verb R (1997) Chemical and physical transitions of periodate oxidized potato starch in water. Carbohyd Polym 33(97):153–162. https://doi.org/10.1016/S0144-8617(97)00046-5
Volova TG, Shumilova AA, Nikolaeva ED, Kirichenko AK, Shishatskaya EI (2019) Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). International Journal of Biological Macromolecules. Elsevier. https://doi.org/10.1016/j.ijbiomac.2019.03.068
Wan Y, Wang J, Gama M, Guo R, Zhang Q, Zhang P, Luo H (2019) Biofabrication of a novel bacteria/bacterial cellulose composite for improved adsorption capacity. Compos A Appl Sci Manuf 125:105560. https://doi.org/10.1016/j.compositesa.2019.105560
Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydrate Polymers. Elsevier. https://doi.org/10.1016/j.carbpol.2019.05.008
Wen X, Zheng Y, Wu J, Wang LN, Yuan Z, Peng J, Meng H (2015) Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int J Nanomed. https://doi.org/10.2147/IJN.S84452
Weyell P, Beekmann U, Küpper C, Dederichs M, Thamm J, Fischer D, Kralisch D (2019) Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohyd Polym 207:1–10. https://doi.org/10.1016/j.carbpol.2018.11.061
Wilham CA, McGuire TA, Mehltretter CL (1971) Hydrolysis of dialdehyde starch with sulfurous acid. Starch Stärke 23(6):201–203. https://doi.org/10.1002/star.19710230605
Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv. https://doi.org/10.1039/c3ra45407j
Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y (2012) Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiolc 62(2), 849–859. https://doi.org/10.1007/s13213-011-0288-4
Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng, C 46:111–117. https://doi.org/10.1016/j.msec.2014.10.023
Zhang Y, Fatehi P (2019) Periodate oxidation of carbohydrate-enriched hydrolysis lignin and its application as coagulant for aluminum oxide suspension. Ind Crops Prod 130:81–95. https://doi.org/10.1016/j.indcrop.2018.12.052
Zhang X, Shen G, Sun S, Shen Y, Zhang C, Xiao A (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sens Actuators B Chem 200:304–309. https://doi.org/10.1016/J.SNB.2014.04.030
Zhang H, Xu X, Chen X, Yuan F, Sun B, Xu Y, Sun D (2017) Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 7(1):4431–4438. https://doi.org/10.1038/s41598-017-04589-6
Acknowledgments
The authors wish to acknowledge financial support provided by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), the National Council of Technological and Scientific Development (CNPq, Brazil), the Cearense Foundation to Support Scientific and Technological Development (FUNCAP, Brazil), the Support Program for Centers of Excellence (PRONEX, Brazil), the Laboratory for Biomaterials and Bioengineering (LBB, Laval University, Quebec City, Canada), and the Embrapa Agroindústria Tropical. The authors would like to thank Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES for supporting the SEM analysis and Laboratório de Produtos e Tecnologia em Processos (LPT, Federal University of Ceará, Brazil) for supporting the FTIR analysis.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest and that the manuscript has not been published elsewhere, is not under editorial review for publication elsewhere, and is not being submitted simultaneously to another journal.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Vasconcelos, N.F., Andrade, F.K., Vieira, L.d.A.P. et al. Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose 27, 3055–3083 (2020). https://doi.org/10.1007/s10570-020-02966-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-020-02966-5