Skip to main content
Log in

Morphologies and properties of Juncus effusus fiber after alkali treatment

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Juncus effusus (JE) is a natural cellulose fiber with unique three-dimensional network structure and interconnected channels. However, to the best of knowledge, no efforts have been dedicated to the influence of alkali treatment on the morphologies and properties of the JE fibers, which can contribute to the removal of dyes from wastewater. Herein, the natural cellulose JE fibers were subjected to alkali treatment various concentrations of NaOH. The mechanical, chemical, thermal, wetting, and surface morphological properties of alkali-treated JE fibers were examined using a variety of experimental techniques, confirming that the chemical and mechanical properties of the JE fibers were enhanced after alkali treatment. Fibers treated with 4% w/v NaOH exhibited a maximum tensile strength of 200.63 ± 36.38 kPa and elongation at break of 12.10% ± 2.69%. During alkali treatment, amorphous material such as hemicellulose was partial removed and the crystallinity index of the alkali-treated JE fibers was enhanced. The treated fibers exhibited a rough morphology owing to the removal of hemicelluloses. Future studies will mainly focus on the applicability of alkali-treated JE fibers for the removal of dyes from wastewater.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahuja D, Kaushik A, Chauhan GS (2017) Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int J Biol Macromol 97:403–410

    Article  CAS  Google Scholar 

  • Ajouguim S, Abdelouahdi K, Waqif M, Stefanidou M, Saâdi L (2018) Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26(3):1503–1516

    Article  Google Scholar 

  • Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208

    Article  CAS  Google Scholar 

  • Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437

    Article  CAS  Google Scholar 

  • Blas-Sevillano RH, Veramendi T, La Torre B, Velezmoro-Sanchez CE, Cervantes-Uc JM (2018) Physicochemical characterization of several types of naturally colored cotton fibers from Peru. Carbohydr Polym 197:246–252

    Article  CAS  Google Scholar 

  • Borchani KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22(3):1577–1589

    Article  CAS  Google Scholar 

  • Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A Appl Sci Manuf 90:589–597

    Article  CAS  Google Scholar 

  • Demir H, Top A, Balkose D, Ulku S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153(1–2):389–394

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • Ghodake GS, Yang J, Shinde SS, Mistry BM, Kim DY, Sung JS, Kadam AA (2018) Paper waste extracted alpha-cellulose fibers super-magnetized and chitosan-functionalized for covalent laccase immobilization. Biores Technol 261:420–427

    Article  CAS  Google Scholar 

  • Gordon CJ (2001) Handbook of textile fibres. Volume I: natural fibres. Woodhead Publishing Limited, Cambridge, England

  • Hao L, Wang R, Fang K, Cai Y (2017) The modification of cotton substrate using chitosan for improving its dyeability towards anionic microencapsulated nano-pigment particles. Ind Crops Prod 95:348–356

    Article  CAS  Google Scholar 

  • Huang Y, Meng F, Liu R, Yu Y, Yu W (2019) Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose 26(12):7067–7078

    Article  CAS  Google Scholar 

  • Jayaramudu J, Guduri BR, Varada Rajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohyd Polym 79(4):847–851

    Article  CAS  Google Scholar 

  • Jiang Y, Deng P, Jing L, Zhang T (2019) Tensile properties and structure characterization of palm fibers by alkali treatment. Fibers Polym 20(5):1029–1035

    Article  CAS  Google Scholar 

  • Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328

    Article  CAS  Google Scholar 

  • Liu D, Han G, Huang J, Zhang Y (2009) Composition and structure study of natural Nelumbo nucifera fiber. Carbohydr Polym 75(1):39–43

    Article  CAS  Google Scholar 

  • Liu X, Wang B, Su Z (2014) Enhanced adsorptive removal of methylene blue from aqueous solution by soft rush (Juncus effusus). Desalin Water Treat 57(4):1671–1683

    Article  Google Scholar 

  • Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172

    Article  CAS  Google Scholar 

  • Popescu C-M, Larsson PT, Olaru N, Vasile C (2012) Spectroscopic study of acetylated kraft pulp fibers. Carbohydr Polym 88(2):530–536

    Article  CAS  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos Part A Appl Sci Manuf 32(1):119–127

    Article  CAS  Google Scholar 

  • Reddy KO, Guduri BR, Rajulu AV (2009) Structural characterization and tensile properties of Borassus fruit fibers. J Appl Polym Sci 114(1):603–611

    Article  CAS  Google Scholar 

  • Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol 101(9):3182–3187

    Article  CAS  Google Scholar 

  • Saravanakumar SS, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92(2):1928–1933

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr Polym 186:332–343

    Article  CAS  Google Scholar 

  • Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 195:566–575

    Article  CAS  Google Scholar 

  • Sun X, Sun H, Li H, Peng H (2013) Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater 25(37):5153–5176

    Article  CAS  Google Scholar 

  • Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KMN (2018) Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties. Carbohydr Polym 186:35–44

    Article  CAS  Google Scholar 

  • Vignesh V, Balaji AN, Karthikeyan MKV (2016) Extraction and characterization of new cellulosic fibers from Indian mallow stem: an exploratory investigation. Int J Polym Anal Charact 21(6):504–512

    Article  CAS  Google Scholar 

  • Wang XY, Ke CQ, Tang CP, Yuan D, Ye Y (2009) 9, 10-Dihydrophenanthrenes and phenanthrenes from Juncus setchuensis. J Nat Prod 72(6):1209–1212

    Article  CAS  Google Scholar 

  • Wang J, Zuo Y, Xiao J, Li P, Wu Y (2019) Construction of compatible interface of straw/magnesia lightweight materials by alkali treatment. Constr Build Mater 228:116712

    Article  CAS  Google Scholar 

  • Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137

    Article  CAS  Google Scholar 

  • Yu S, Zhang R, Wu Q, Chen T, Sun P (2013) Bio-inspired high-performance and recyclable cross-linked polymers. Adv Mater 25(35):4912–4917

    Article  CAS  Google Scholar 

  • Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55(11):2553–2558

    Article  CAS  Google Scholar 

  • Zhao W, Xu LL, Zhang X, Gong XW, Zhu DL, Xu XH, Yang XL (2018) Three new phenanthrenes with antimicrobial activities from the aerial parts of Juncus effusus. Fitoterapia 130:247–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for the financial support from the National Natural Science Foundation of China (21905214) and the China Chemical Fibers Association, Lv Yu Foundation (CCFALY2018-2-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunli Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Zhang, C., Wang, A. et al. Morphologies and properties of Juncus effusus fiber after alkali treatment. Cellulose 27, 1909–1920 (2020). https://doi.org/10.1007/s10570-019-02933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02933-9

Keywords

Navigation