Skip to main content
Log in

Three-dimensional (3D) printed tablets using ethyl cellulose and hydroxypropyl cellulose to achieve zero order sustained release profile

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the potential of coupling hot-melt extrusion (HME) and 3D printing in order to design drug containing matrix tablets for the purpose of achieving zero order release. The effect of the blend ratio of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC), carbamazepine (CBZ) as a model drug and triethyl citrate (TEC) on the mechanical and printability properties of extruded filaments was investigated. Filament formulation containing CBZ, EC and HPC (3, 64.7 and 32.3% w/w, respectively) and 20% w/w of TEC (by weight on the dry powder) showed optimum mechanical and printability properties and subsequently was printed into tablets (370 mg, 13 mm diameter, 3.5 mm thickness, cylinder-shaped) at 187 °C. The printed tablets showed good uniformity in drug content and appropriate mechanical properties. The optimum filament showed first order drug release pattern, while the 3D printed tablets showed zero-order drug release and slower drug release rate than the optimum filament. Overall, we have demonstrated that zero order release tablets can be prepared from a 2:1 ratio of EC to HPC, by combination of HME and 3D printing technologies with the capability of reducing dose frequency and adverse effects of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HME:

Hot-melt extrusion

3D:

3 dimensional

EC:

Ethyl cellulose

HPC:

Hydroxypropyl cellulose

CBZ:

Carbamazepine

TEC:

Triethyl citrate

SEM:

Scanning electron microscopy

DSC:

Differential scanning calorimetry

References

  • Arafat B, Qinna N, Cieszynska M, Forbes RT, Alhnan MA (2018a) Tailored on demand anti-coagulant dosing: an in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms. Eur J Pharm Biopharm 128:282–289

    CAS  PubMed  Google Scholar 

  • Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, Arafat T, Alhnan MA (2018b) Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci 118:191–199

    CAS  PubMed  Google Scholar 

  • Bijarimi M, Ahmad S, Rasid R, Khushairi M, Zakir M (2016) Poly (lactic acid)/poly (ethylene glycol) blends: mechanical, thermal and morphological properties. In: AIP Conference Proceedings, AIP Publishing, p 020002

  • Boetker J, Water JJ, Aho J, Arnfast L, Bohr A, Rantanen J (2016) Modifying release characteristics from 3D printed drug-eluting products. Eur J Pharm Sci 90:47–52

    CAS  PubMed  Google Scholar 

  • Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Cambridge

    Google Scholar 

  • Chen L, Yang G, Chu X, Gao C, Wang Y, Gong W, Li Z, Yang Y, Yang M, Gao C (2019) Polymer distribution and mechanism conversion in multiple media of phase-separated controlled-release film-coating. Pharmaceutics 11(2):80

    CAS  PubMed Central  Google Scholar 

  • Claeys B, Vervaeck A, Hillewaere XK, Possemiers S, Hansen L, De Beer T, Remon JP, Vervaet C (2015) Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm 90:44–52

    CAS  PubMed  Google Scholar 

  • De Brabander C, Van den Mooter G, Vervaet C, Remon JP (2002) Characterization of ibuprofen as a nontraditional plasticizer of ethyl cellulose. J Pharm Sci 91(7):1678–1685

    Google Scholar 

  • Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K (2013) Preparation of carbamazepine–Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84(1):228–237

    CAS  PubMed  Google Scholar 

  • Fan W, Zhu W, Zhang X, Xu Y, Di L (2019) Application of the combination of ball-milling and hot-melt extrusion in the development of an amorphous solid dispersion of a poorly water-soluble drug with high melting point. RSC Adv 9(39):22263–22273

    CAS  Google Scholar 

  • Farto-Vaamonde X, Auriemma G, Aquino RP, Concheiro A, Alvarez-Lorenzo C (2019) Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. Eur J Pharm Biopharm 141:100–110

    CAS  PubMed  Google Scholar 

  • Fuenmayor E, Forde M, Healy A, Devine D, Lyons J, McConville C, Major I (2018) Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 10(2):44

    PubMed Central  Google Scholar 

  • Gareb B, Eissens AC, Kosterink JG, Frijlink HW (2016) Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease. Eur J Pharm Biopharm 103:32–42

    CAS  PubMed  Google Scholar 

  • Goyanes A, Buanz AB, Basit AW, Gaisford S (2014) Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476(1–2):88–92

    CAS  PubMed  Google Scholar 

  • Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, Basit AW (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12(11):4077–4084

    CAS  PubMed  Google Scholar 

  • Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW (2016) Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514(1):290–295

    CAS  PubMed  Google Scholar 

  • Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gasiford S, Basit AW (2019) Direct powder extrusion 3D printing: fabrication of drug products using a novel, single-step process. Int J Pharm 567:118471

    CAS  PubMed  Google Scholar 

  • Guo F, Wu F, Mu Y, Hu Y, Zhao X, Meng W, Giesy JP, Lin Y (2016) Characterization of organic matter of plants from lakes by thermal analysis in a N 2 atmosphere. Sci Rep 6:22877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, O’Donnell KP, Keen JM, Rickard MA, McGinity JW, Williams RO (2016) A new extrudable form of hypromellose: AFFINISOL™ HPMC HME. AAPS Pharmscitech 17(1):106–119

    CAS  PubMed  Google Scholar 

  • Islam MT, Scoutaris N, Maniruzzaman M, Moradiya HG, Halsey SA, Bradley MS, Chowdhry BZ, Snowden MJ, Douroumis D (2015) Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur J Pharm Biopharm 96:106–116

    CAS  PubMed  Google Scholar 

  • Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, Paluch M, Jachowicz R (2017) 3D printed orodispersible films with Aripiprazole. Int J Pharm 533(2):413–420

    PubMed  Google Scholar 

  • Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications–recent achievements and challenges. Pharm Res 35(9):176

    PubMed  PubMed Central  Google Scholar 

  • Kadry H, Wadnap S, Xu C, Ahsan F (2019) Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci 135:60–67

    CAS  PubMed  Google Scholar 

  • Kamel R, Abbas H (2018) PLGA-based monolithic filaments prepared by hot-melt extrusion: in-vitro comparative study. Annales Pharmaceutiques Francaises 76:97–106

    CAS  PubMed  Google Scholar 

  • Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ (2018) Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS Pharmscitech 19(8):3403–3413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou W, Cai C, Xu S, Wang H, Liu J, Yang D, Zhang T (2011) In vitro and in vivo evaluation of novel immediate release carbamazepine tablets: complexation with hydroxypropyl-β-cyclodextrin in the presence of HPMC. Int J Pharm 409(1–2):75–80

    CAS  PubMed  Google Scholar 

  • Kovacevic I, Parojcic J, Homšek I, Tubic-Grozdanis M, Langguth P (2008) Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharm 6(1):40–47

    Google Scholar 

  • Koester LS, Xavier CR, Mayorga P, Bassani VL (2003) Influence of β-cyclodextrin complexation on carbamazepine release from hydroxypropyl methylcellulose matrix tablets. Eur J Pharm Biopharm 55(1):85–91

    CAS  PubMed  Google Scholar 

  • Ledwon P, Andrade JR, Lapkowski M, Pawlicka A (2015) Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochim Acta 159:227–233

    CAS  Google Scholar 

  • Li QJ, Wen HY, Jia DY, Guan XY, Pan H, Yang Y, Yu SH, Zhu ZH, Xiang RW, Pan WS (2017) Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm 525:5–11

    CAS  PubMed  Google Scholar 

  • Lim SH, Chia SMY, Kang L, Yap KYL (2016) Three-dimensional printing of carbamazepine sustained-release scaffold. J Pharm Sci 105(7):2155–2163

    CAS  PubMed  Google Scholar 

  • Löscher W (1998) New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 342(1):1–13

    PubMed  Google Scholar 

  • Lu M (2019) Novel excipients and materials used in FDM 3D printing of pharmaceutical dosage forms. 3D and 4D printing in biomedical applications: process engineering and additive manufacturing. Wiley, New York, pp 211–237

    Google Scholar 

  • Medarević DP, Kachrimanis K, Mitrić M, Djuriš J, Djurić Z, Ibrić S (2016) Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharm Dev Technol 21(3):268–276

    PubMed  Google Scholar 

  • Mujtaba A, Kohli K (2016) In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol 89:434–441

    CAS  PubMed  Google Scholar 

  • Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50

    CAS  PubMed  Google Scholar 

  • Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N (2019) 3D-Printed Isoniazid Tablets for the Treatment and Prevention of Tuberculosis—Personalized Dosing and Drug Release. AAPS Pharmscitech 20(2):52

    PubMed  PubMed Central  Google Scholar 

  • Palekar S, Nukala PK, Mishra SM, Kipping T, Patel K (2019) Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int J Pharm 556:106–116

    CAS  PubMed  Google Scholar 

  • Parfitt K (1999) Martindale: the complete drug reference. Pharmaceutical Press, London

    Google Scholar 

  • Patil H, Tiwari RV, Repka MA (2016) Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS Pharmscitech 17(1):20–42

    CAS  PubMed  Google Scholar 

  • Powell G, Saunders M, Rigby A, Marson AG (2010) Immediate‐release versus controlled‐release carbamazepine in the treatment of epilepsy. Cochrane Database Syst Rev 1:CD007124

    Google Scholar 

  • Sadia M, Isreb A, Abbadi I, Isreb M, Aziz D, Selo A, Timmins P, Alhnan MA (2018) From ‘fixed dose combinations’ to ‘a dynamic dose combiner’: 3D printed bi-layer antihypertensive tablets. Eur J Pharm Sci 123:484–494

    CAS  PubMed  Google Scholar 

  • Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, Kang MJ, Choi YW (2018) Formulation and in vivo pharmacokinetic evaluation of ethyl cellulose-coated sustained release multiple-unit system of tacrolimus. Int J Biol Macromol 109:544–550

    CAS  PubMed  Google Scholar 

  • Skowyra J, Pietrzak K, Alhnan MA (2015) Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci 68:11–17

    CAS  PubMed  Google Scholar 

  • Smith DM, Kapoor Y, Klinzing GR, Procopio AT (2018) Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule. Int J Pharm 544(1):21–30

    CAS  PubMed  Google Scholar 

  • Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T (2017) 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull 40(3):357–364

    CAS  PubMed  Google Scholar 

  • Tang B, Liu Z, Tian Z, Zhang J, Chen X, Fang G, Song H (2019) Development and evaluation of synchronized and sustained release Tripergium Wilfordii tablets based hot-melt extrusion and direct powder compression. J Drug Deliv Sci Technol 53:101208

    CAS  Google Scholar 

  • Tiwari RV, Patil H, Repka MA (2016) Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin Drug Deliv 13(3):451–464

    CAS  PubMed  Google Scholar 

  • Wiranidchapong C, Ruangpayungsak N, Suwattanasuk P, Shuwisitkul D, Tanvichien S (2015) Plasticizing effect of ibuprofen induced an alteration of drug released from Kollidon SR matrices produced by direct compression. Drug Dev Ind Pharm 41(6):1037–1046

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang H, Li H, Ou Z, Yang G (2018) 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci 115:11–18

    CAS  Google Scholar 

  • Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197

    CAS  PubMed  Google Scholar 

  • Zhang J, Xu P, Vo AQ, Bandari S, Yang F, Durig T, Repka MA (2019) Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J Drug Deliv Sci Technol 52:292–302

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homaee Borujeni, S., Mirdamadian, S.Z., Varshosaz, J. et al. Three-dimensional (3D) printed tablets using ethyl cellulose and hydroxypropyl cellulose to achieve zero order sustained release profile. Cellulose 27, 1573–1589 (2020). https://doi.org/10.1007/s10570-019-02881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02881-4

Keywords

Navigation