Skip to main content

Advertisement

Log in

Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Design of strong and tough hydrogels had made significant progress recently. However, most of the cellulose-based hydrogels are soft and brittle. In this work, we fabricate a class of strong and tough hydrogels by simply soaking poly (acrylamide) (PAM)/methylcellulose (MC) hydrogels in kosmotropic solutions. The kosmotropic ions could notably enhance the hydrophobic interactions and chain bundlings of MC. As a consequence, the obtained optimal ammonium sulfate [(NH4)2SO4] treated PAM/MC gel with a water content of approximately 30 wt% exhibit predominant mechanical properties, with the fracture tensile strength of 4.4 MPa, fracture elongation of 690%, elastic modulus of 3.8 MPa, and toughness of 19.3 MJ/m3, superior to that of the most existing cellulose-based hydrogels. The enhancement of mechanical properties could be ascribed to the formation of more hydrophobic associations in methylcellulose network. Additionally, the mechanical properties of the methylcellulose-based hydrogels could be facile and finely tuned by varying the post soaking time and the kind of Hofmeister salts. We expect that this work may enrich the avenue in the preparation and regulation of MC-hydrogels for promising applications in biomedical and load-bearing fields.

Graphic abstract

The obtained PAM/MC-As gels possessed eminent mechanical performances. Additionally, the mechanical properties of MC-based hydrogels could be facile and finely tuned by soaking in different kosmotropic anions solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bain MK, Bhowmick B, Maity D, Mondal D, Mollick MMR, Rana D, Chattopadhyay D (2012) Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel. Int J Biol Macromol 51:831–836

    CAS  PubMed  Google Scholar 

  • Bloksma MM, Bakker DLJ, Weber C, Hoogenboom R, Schubert US (2010) The effect of hofmeister salts on the LCST transition of poly (2-oxazoline) s with varying hydrophilicity. Macromol Rapid Commun 31:724–728

    CAS  PubMed  Google Scholar 

  • Bodvik R, Dedinaite A, Karlson L, Bergströma M, Bäverbäckc P, Pedersen JS, Edwards K, Karlsson GR, Varga I, Claesson PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Phys Eng Asp 354:162–171

    CAS  Google Scholar 

  • Chen YN, Peng L, Liu T, Wang Y, Shi S, Wang H (2016) Poly(vinyl alcohol)-tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl Mater Interfaces 8:27199–27206

    CAS  PubMed  Google Scholar 

  • Chen F, Tang Z, Lu S, Zhu L, Wang Q, Gang Q, Yang J, Chen Q (2019a) Fabrication and mechanical behaviors of novel supramolecular/polymer hybrid double network hydrogels. Polymer 168:159–167

    CAS  Google Scholar 

  • Chen W, Li N, Ma Y, Minus ML, Benson K, Lu X, Wang X, Ling X, Zhu H (2019b) Superstrong and tough hydrogel through physical cross-linking and molecular alignment. Biomacromolecules. https://doi.org/10.1021/acs.biomac.9b01223

    Article  PubMed  Google Scholar 

  • Chen W, Bu Y, Li D, Liu C, Chen G, Wan X, Li N (2019c) High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose. Cellulose https://doi.org/10.1007/s10570-019-02797-z

    Article  Google Scholar 

  • Creton Costantino (2017) Networks and gels: soft but dynamic and tough. Macromolecules 50:8297–8316

    CAS  Google Scholar 

  • Ding C, Zhang M, Li G (2015) Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr Polym 119:194–201

    CAS  PubMed  Google Scholar 

  • Filho GR, de Assunção RMN, Vieira JG, Meireles CDS, Cerqueira DA, Da Silva Barud H, Ribeiro SJL, Messaddeq Y (2007) Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab 92:205–210

    Google Scholar 

  • Guo G, Chen Y, Liu X, Zhu DY, Gao L (2018) Tough and durable hydrogels with robust skin layers formed via a soaking treatment. J Mater Chem B 6:8043–8054

    CAS  Google Scholar 

  • Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379

    CAS  PubMed  Google Scholar 

  • He Q, Huang Y, Wang S (2018) Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv Funct Mater 28:1705069

    Google Scholar 

  • Heyda J, Dzubiella J (2014) Thermodynamic description of hofmeister effects on the LCST of thermosensitive polymers. J Phys Chem B 118:10979

    CAS  PubMed  Google Scholar 

  • Hu X, Fan L, Qin G, Shen Z, Chen J, Wang M, Yang J, Chen Q (2019) Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J Power Sources 414:201–209

    CAS  Google Scholar 

  • Jaspers M, Rowan AE, Kouwer PHJ (2015) Tuning hydrogel mechanics using the hofmeister effect. Adv Funct Mater 25:6503–6510

    CAS  Google Scholar 

  • Jian PG (2014) Materials both Tough and Soft. Science 344:161–162

    Google Scholar 

  • Li N, Chen G, Chen W, Huang J, Tian J, Wan X, He M, Zhang H (2017a) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbonhydr polym 178:159–165

    CAS  Google Scholar 

  • Li N, Chen W, Chen G, Tian J (2017b) Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength. Carbonhydr Polym 171:77–84

    CAS  Google Scholar 

  • Li Y, Xiong X, Yu X, Sun X, Yang J, Zhu L, Qin G, Dai Y, Chen Q (2019a) Tough and conductive nanocomposite hydrogels for human motion monitoring. Polym Test 75:38–47

    CAS  Google Scholar 

  • Li N, Liu C, Chen W (2019b) Facile access to guar gum based supramolecualr hydrogels with rapid self-healing ability and multi-stimuli responsive gel-sol transitions. J Agr Food Chem 67:746–752

    CAS  Google Scholar 

  • Liang H, Hong M, Ho R, Chung C, Lin Y, Chen C, Sung H (2004) Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromol 5:1917–1925

    CAS  Google Scholar 

  • Liu T, Jiao C, Peng X, Chen YN, Wang H (2018) Super-Strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J Mater Chem B 6:8105–8114

    CAS  Google Scholar 

  • Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322

    CAS  PubMed  Google Scholar 

  • Lu X, Chan CY, Lee KI, Ng PF, Fei B, Xin JH, Fu J (2014) Super-tough and thermo-healable hydrogel-promising for shape-memory absorbent fiber. J Mater Chem B 2:7631–7638

    CAS  Google Scholar 

  • Moreira LA, Boström MM, Ninham BW, Biscaia EC, Tavares FW (2006) Hofmeister effects: why protein charge, pH titration and protein precipitation depend on the choice of background salt solution. Colloids Surf A Phys Eng Asp 282:457–463

    Google Scholar 

  • Mredha MTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP (2018) A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv Mater 30:1704937

    Google Scholar 

  • Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7:777–803

    CAS  Google Scholar 

  • Nishida K, Morita H, Katayama Y, Inoue R, Kanaya T, Sadakane K, Seto H (2016) Salting-out and salting-in effects of amphiphilic salt on cloud point of aqueous methylcellulose. Proc Biochem 59:52–57

    Google Scholar 

  • Parsons DF, Bostr MM, Nostro PL, Ninham BW (2011) Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys Chem Chem Phys 13:12352–12367

    CAS  PubMed  Google Scholar 

  • Paterova J, Rembert KB, Heyda J, Kurra Y, Jungwirth P (2013) Reversal of the hofmeister series: specific ion effects on peptides. J Phys Chem B 117:8150–8158

    CAS  PubMed  Google Scholar 

  • Pérez OE, Sánchez CC, Pilosof AMR, Patino JMR (2008) Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocoll 22:387–402

    Google Scholar 

  • Rangelova N, Radev L, Nenkova S, Salvado IMM, Fernandes MHV, Herzog M (2011) Methylcellulose/SiO2 hybrids: sol-gel preparation and characterization by XRD, FTIR and AFM. Cent Eur J Chem 9:112–118

    CAS  Google Scholar 

  • Rassu M, Alzari V, Nuvoli D, Nuvoli L, Sanna D, Sanna V, Malucelli G, Marian A (2017) Semi-interpenetrating polymer networks of methyl cellulose and polyacrylamide prepared by frontal polymerization. J Polym Sci Part A Polym Chem 55:1268–1274

    CAS  Google Scholar 

  • Reddy PM, Hsieh S, Chang C, Leong Y, Chen J, Lee M (2017) Amplification of hofmeister effect on poly(N-isopropylacrylamide) by crown ether. Colloids Surf A Phys Eng Asp 528:1–9

    CAS  Google Scholar 

  • Schwierz N, Horinek D, Netz RR (2013) Anionic and cationic hofmeister effects on hydrophobic and hydrophilic surfaces. Langmuir 29:2602–2614

    CAS  PubMed  Google Scholar 

  • Siriprom W, Kuha P, Kongsriprapan S, Teanchai K (2014) Studying methylcellulose-base edible films properties by XRD, EDXRF and FTIR. Adv Mater Res 979:319–322

    CAS  Google Scholar 

  • Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tate MC, Shear DA, Hoffman SW, Stein DG, Laplaca MC (2001) Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials 22:1113–1123

    CAS  PubMed  Google Scholar 

  • Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927

    CAS  Google Scholar 

  • Xu Y, Li L, Zheng P, Lam YC, Hu X (2004a) Controllable gelation of methylcellulose by a salt mixture. Langmuir 20:6134

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang C, Tam KC, Li L (2004b) Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 20:646–652

    PubMed  Google Scholar 

  • Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou J, Suo Z (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang X, Yang F, Shen H, Wu D (2016) A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater 28:7178–7184

    CAS  PubMed  Google Scholar 

  • Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Chen Q, Zhang B, Song J (2019) Hofmeister anion-induced tunable rheology of self-healing supramolecular hydrogels. Nanoscale Res Lett 14:5

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Shuang G, Hu Q, Gao G, Xu K, Wang P (2016) Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel. Chem Eng J 306:953–960

    CAS  Google Scholar 

  • Zhu Z, Ling S, Yeo J, Zhao S, Tozzi L, Buehler MJ, Omenetto F, Li C, Kaplan DL (2018) High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv Funct Mater 28:1704757

    Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to financial support from National Natural Science Foundation of China (No. 21808126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Nan Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, D., Bu, Y. et al. Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose 27, 1113–1126 (2020). https://doi.org/10.1007/s10570-019-02871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02871-6

Keywords

Navigation