Skip to main content
Log in

Thermosensitive hydrogels based on methylcellulose derivatives for prevention of postoperative adhesion

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Postoperative adhesions commonly cause severe complications, and also increase the risk of adhesiolysis. To improve postoperative adhesion, a series of 2-methacryloyloxy ethyl phosphorylcholine conjugated methylcellulose (MC-g-MPC) derivatives were synthesized to utilize the anti-protein adsorption of 2-methacryloyloxy ethyl phosphorylcholine and the thermosensitivity of methylcellulose. The structures of MC-g-MPC derivatives were characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) analyses, and their thermosensitivities were studied by rheological analysis. The gelling temperature of the MC-g-MPC hydrogel was 33 °C and gelling time of the hydrogel under body temperature was 2.5 min. The morphology of the MC-g-MPC hydrogel was observed by scanning electron microscopy (SEM). The results of in vitro cytotoxicity and immunotoxicity, and hemolysis assays demonstrated the good biocompatibility of MC-g-MPC hydrogels. Following the injection of the MC-g-MPC hydrogel, the postoperative adhesion of damaged ceca in Sprague–Dawley rats was improved when compared with a control group (no treatment). In addition, MC-g-MPC-0.25 hydrogel could downregulate the expression of Col-I and Col-IV collagen proteins, thus exert its anti-protein absorption capacity. Therefore, the MC-g-MPC hydrogel is a promising biomaterial for preventing postoperative adhesion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893

    CAS  PubMed  Google Scholar 

  • Belluco C, Meggiolaro F, Pressato D, Pavesio A, Bigon E, DonàM Forlin M, Nitti D, Lise M (2001) Prevention of postsurgical adhesions with an auto crosslinked hyaluronan derivative gel. J Surg Res 100(2):217–221

    CAS  PubMed  Google Scholar 

  • Bertelli R, Valenti F, Oleggini R, Caridi G, Altieri P, Coviello DA, Botti G, Ravazzolo R, Ghiggeri GM (1998) Cell-specific regulation of a 1(III) and a 2(V) collagen by TGF-b1 in tubulointerstitial cell models. Nephrol Dial Transpl 13(3):573–579

    CAS  Google Scholar 

  • Broek RPG, Stommel MWJ, Strik C, Van Laarhoven CJHM, Keus F, Van Goor H (2014) Benefits and harms of adhesion barriers for abdominal surgery: a systematic review and meta-analysis. Lancet 383:48–59

    PubMed  Google Scholar 

  • Chen C, Chen S, Mao S, Tsai M, Chou P, Liao C, Chen J (2017) Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr Polym 173:721–731

    CAS  PubMed  Google Scholar 

  • Cheng F, Wu Y, Li H, Yan T, Wei X, Wu G (2019) Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr Polym 207:180–190

    CAS  PubMed  Google Scholar 

  • Chou P, Chen S, Chen C, Chen S, Teng Y, Chen J (2017) Thermo-responsive in situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion. Acta Biomater 63:85–95

    CAS  PubMed  Google Scholar 

  • Coleman MG, McLain AD, Moran BJ (2000) Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis Colon Rectum 43(9):1297–1299

    CAS  PubMed  Google Scholar 

  • Davey AK, Maher PJ (2007) Surgical adhesions: a timely update, a great challenge for the future. J Minim Invasive Gynecol 14(1):15–22

    PubMed  Google Scholar 

  • Ellis H (1997) The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl Acta Chir 577:5–9

    Google Scholar 

  • Ellis H (2001) Medicolegal consequences of postoperative intra-abdominal adhesions. J R Soc Med 94(7):331–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Feng Y, Lu J, Khan M, Guo J (2012) Biomimetic surface modification of polycarbonateurethane film via phosphorylcholine-graft for resisting platelet adhesion. Macromol Res 20(10):1063–1069

    CAS  Google Scholar 

  • Gao B, Feng Y, Lu J, Zhang L, Zhao M, Shi C, Khan M, Guo J (2013) Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Mater Sci Eng C 33(5):2871–2878

    CAS  Google Scholar 

  • Guo W, Deng L, Yu J, Chen Z, Woo Y, Liu H, Li T, Lin T, Chen H, Zhao M, Zhang L, Li G, Hu Y (2018a) Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug Deliv 25(1):1103–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Deng L, Chen Z, Chen Z, Yu J, Liu H, Li T, Lin T, Chen H, Zhao M, Zhang L, Li G, Hu Y (2018b) Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance. Nanomedicine 14(3):353–370

    PubMed  Google Scholar 

  • Haney AF, Hesla J, Hurst BS, Kettel LM, Murphy AA, Rock JA, Rowe G, Schlaff WD (1995) Expanded polytetrafluoroethylene (Gore-lex Surgical Membrane*) is superior to oxidized regenerated cellulose (Interceed lC7+) in preventing adhesions. Fertil Steril 63(5):1021–1026

    CAS  PubMed  Google Scholar 

  • Healy MW, Schexnayder B, Connell MT, Terry N, Decherney AH, Csokmay J, Yauger BJ, Hill MJ (2016) Intrauterine adhesion prevention after hysteroscopy: a systematic review and meta-analysis. Am J Obstet Gynecol 215(3):267–275

    PubMed  Google Scholar 

  • Hershlag A, Diamond MP, DeCherney Ah (1999) Adhesiolysis. Clin Obstet Gynecol 34(2):395–402

    Google Scholar 

  • Kamel RM (2010) Prevention of postoperative peritoneal adhesions. Eur J Obstet Gynecol Reprod Biol 150(2):111–118

    PubMed  Google Scholar 

  • Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW (2016) Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds. Biomacromol 17(1):4–11

    CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    CAS  PubMed  Google Scholar 

  • Lauder CIW, Garcea G, Strickland A, Maddern GJ (2010) Abdominal adhesion prevention: still a sticky subject? Dig Surg 27(15):347–358

    PubMed  Google Scholar 

  • Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18(20):7291–7298

    CAS  Google Scholar 

  • Li J, Feng X, Liu B, Yu Y, Sun L, Liu T, Wang Y, Ding J, Chen X (2017) Polymer materials for prevention of postoperative adhesion. Acta Biomater 61:21–40

    CAS  PubMed  Google Scholar 

  • Lodge AJ, Wells WJ, Backer CL, O’Brien JE, Austin EH, Bacha EA, Weinstein S (2008) A novel bioresorbable film reduces postoperative adhesions after infant cardiac surgery. Ann Thorac Surg 86(2):614–621

    PubMed  Google Scholar 

  • Luo Z, Hu Y, Xin R, Zhang B, Li J, Ding X, Hou Y, Yang L, Cai K (2014) Surface functionalized mesoporous silica nanoparticles with natural proteins for reduced immunotoxicity. J Biomed Mater Res 102(11):3781–3794

    Google Scholar 

  • Lustenberger T, Inaba K, Demetriades D, Ph D (2011) Prevention of postoperative peritoneal adhesions: a review of the literature. Am J Surg 201(1):111–121

    PubMed  Google Scholar 

  • Matsuda S, Se N, Iwata H, Ikada Y (2002) Evaluation of the antiadhesion potential of UV cross-linked gelatin films in a rat abdominal model. Biomaterials 23:2901–2908

    CAS  PubMed  Google Scholar 

  • Metwally M, Cheong Y, Li TC (2008) A review of techniques for adhesion prevention after gynaecological surgery. Curr Opin Obstet Gynecol 20(4):345–352

    PubMed  Google Scholar 

  • Mohan H, Krumbholz M, Sharma R, Eisele S, Junker A, Sixt M, Newcombe J, Wekerle H, Hohlfeld R, Lassmann H, Meinl E (2010) Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol 20(5):966–975

    CAS  PubMed  Google Scholar 

  • Ohya S, Sonoda H, Nakayama Y, Matsuda T (2005) The potential of poly(N-isopropylacrylamide) (PNIPAM)-grafted hyaluronan and PNIPAM-grafted gelatin in the control of post-surgical tissue adhesions. Biomaterials 26(6):655–659

    CAS  PubMed  Google Scholar 

  • Shi K, Xue B, Liao J, Qu Y, Qian Z (2017) Polymeric hydrogels for post-operative adhesion prevention: a review. Mater Express 7(6):417–438

    CAS  Google Scholar 

  • Sikirica V, Bapat B, Candrilli SD, Davis KL, Wilson M, Johns A (2011) The inpatient burden of abdominal and gynecological adhesiolysis in the US. BMC Surg 11(13):1–9

    Google Scholar 

  • Suvik A, Effendy AMN (2012) The use of modified masson’s trichrome staining in collagen evaluation in wound healing study. Mal J Vet Res 3(1):39–47

    Google Scholar 

  • Tate MC, Shear DA, Hoffman SW, Stein DG, LaPlaca MC (2011) Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials 22(10):1113–1123

    Google Scholar 

  • Ward BC, Panitch A (2011) Abdominal adhesions: current and novel therapies. J Surg Res 165(1):91–111

    PubMed  Google Scholar 

  • Wells MR, Kraus K, Batter DK, Blunt DG, Weremowitz J, Lynch SE, Antoniades HN, Hansson HA (1997) Gel matrix vehicles for growth factor application in nerve gap injuries repaired with tubes: a comparison of biomatrix, collagen, and methylcellulose. Exp Neurol 146(2):395–402

    CAS  PubMed  Google Scholar 

  • Wiseman DM, Gottlick-Iarkowski L, Kamp L (1999) Effect of different barriers of oxidized regenerated cellulose (ORC) on cecal and sidewall adhesions in the presence and absence of bleeding. J Invest Surg 12(3):141–146

    CAS  PubMed  Google Scholar 

  • Wu W, Cheng R, Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W, Sarmento B (2017) Advances in biomaterials for preventing tissue adhesion. J Controll Release 261:318–336

    CAS  Google Scholar 

  • Xiao K, Wang Z, Wu Y, Lin W, He Y, Zhan J, Luo F, Li Z, Li J, Tan H, Fu Q (2019) Biodegradable anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers. J Biomed Mater Res 107A:2205–2221

    Google Scholar 

  • Yeo Y, Highley CB, Bellas E, Ito T, Marini R, Langer R, Kohane DS (2006) In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 27(27):4698–4705

    CAS  PubMed  Google Scholar 

  • Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS (2007) Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Controlled Release 120(3):178–185

    CAS  Google Scholar 

  • Yuan J, Lin S, Shen J (2008) Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids Surf B 66(1):90–95

    CAS  Google Scholar 

  • Yuan B, He C, Dong X, Wang J, Gao Z, Wang Q, Tian H, Chen X (2015) 5-Fluorouracil loaded thermosensitive PLGA–PEG–PLGA hydrogels for the prevention of postoperative tendon adhesion. RSC Adv 5:25295–25303

    CAS  Google Scholar 

  • Yumoto H, Hirota K, Hirao K, Miyazaki T, Yamamoto N, Miyamoto K, Murakami K, Fujiwara N, Matsuo T, Miyake Y (2015) Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells. J Biomed Mat Res Part A 103(2):555–563

    Google Scholar 

  • Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J (2011) Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 32(21):4725–4736

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gao C, Li X, Xu C, Zhang Y, Sun Z, Liu Y, Gao J (2014) Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym 101:171–178

    CAS  PubMed  Google Scholar 

  • Zhang E, Li J, Zhou Y, Chen P, Ren B, Qin Z, Ma L, Cui J, Sun H, Yao F (2017) Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomater 55:420–433

    CAS  PubMed  Google Scholar 

  • Zhang X, Sun G, Tian M, Wang Y, Qu C, Cheng X, Feng C, Chen X (2019) Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. Int J Biol Macromol 138:321–333

    CAS  PubMed  Google Scholar 

  • Zhu L, Zhang YQ (2016) Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model. Mater Sci Eng C 61:387–395

    CAS  Google Scholar 

  • Zou W, Chen Y, Zhang X, Li J, Sun L, Gui Z, Du B, Chen S (2018) Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym 202:246–257

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Special Funds for Public Welfare Research and Capacity Building of Guangdong Province in China (2016A020222017 and 2016A010103014), the Key project of Guangdong Natural Science Foundation of China (2017B030311007), and the Science and Technology Planning Project of Guangdong Province in China (2012B091100356).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxin Li, Li-Ming Zhang or Liqun Yang.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 21941 kb)

Supplementary material 2 (MOV 37227 kb)

Supplementary material 3 (DOC 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Guo, W., Zhang, J. et al. Thermosensitive hydrogels based on methylcellulose derivatives for prevention of postoperative adhesion. Cellulose 27, 1555–1571 (2020). https://doi.org/10.1007/s10570-019-02857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02857-4

Keywords

Navigation