Skip to main content

Advertisement

Log in

Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In recent years, cellulose nanocrystal (CNC) based materials have attracted great research attention for different applications owing to their unique properties and facile modification chemistry. In this work, CNC based thermo-responsive fluorescent composites were successfully prepared via the metal-free surface-initiated atom transfer radical polymerization (ATRP) of NIPAAm and a Schiff base containing dye (HDPAP). Results demonstrated CNC-poly (NIPAAm–HDPAP) composites display sensitive temperature-responsive coil-to-globule transition behavior at the temperature of lower critical solution temperature. The bright fluorescence offered by the Schiff base dye (HDPAP) was also confirmed by fluorescence spectra. Moreover, the preparation method of light meditated ATRP was proved to become the promising way in fabrication of multifunctional nanomaterials for its incomparable advantages, including low energy consumption, high efficiency, good monomer adaptation, free of transition metal ions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves L, Medronho B, Antunes FE, Fernández-García MP, Ventura J, Araújo JP, Romano A, Lindman B (2015) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq 210:106–112

    CAS  Google Scholar 

  • Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    CAS  PubMed  Google Scholar 

  • Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    CAS  Google Scholar 

  • Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659

    CAS  PubMed  Google Scholar 

  • Bai L, Jiang X, Sun Z, Pei Z, Ma A, Wang W, Chen H, Yang H, Yang L, Wei D (2019) Self-healing nanocomposite hydrogels based on modified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP. Cellulose 26:1–15

    Google Scholar 

  • Barazzouk S (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493

    CAS  Google Scholar 

  • Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240

    CAS  Google Scholar 

  • Boujemaoui A, Mongkhontreerat S, Malmström E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464

    CAS  PubMed  Google Scholar 

  • Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer 99:240–249

    CAS  Google Scholar 

  • Cao Q-y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y (2017a) Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater Sci Eng C Mater 80:578–583

    CAS  Google Scholar 

  • Cao Q-y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y (2017b) Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Mater Sci Eng C Mater 80:411–416

    CAS  Google Scholar 

  • Chen J, Liu M, Huang H, Deng F, Mao L, Wen Y, Huang L, Tian J, Zhang X, Wei Y (2018) Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization. J Mol Liq 259:179–185

    CAS  Google Scholar 

  • Chen M, Fan D, Liu S, Rao Z, Dong Y, Wang W, Chen H, Bai L, Cheng Z (2019) Fabrication of self-healing hydrogels with surface functionalized microcapsules from stellate mesoporous silica. Polym Chem 10:503–511

    CAS  Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810

    CAS  PubMed  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    CAS  Google Scholar 

  • Follain N, Marais MF, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344

    CAS  Google Scholar 

  • Gan L, Wang Y, Zhang M, Xia X, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Sci Bull 64:934–940

    CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  • Hiraoki R, Tanaka R, Ono Y, Nakamura M, Isogai T, Saito T, Isogai A (2018) Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis. Cellulose 25:1599–1606

    CAS  Google Scholar 

  • Hondo H, Saito T, Isogai A (2019a) Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10. Cellulose 26:1479–1487

    CAS  Google Scholar 

  • Hondo H, Saito T, Isogai A (2019b) Preparation of oxidized celluloses in a TEMPO/NaBr system using different chlorine reagents in water. Cellulose 26:3021–3030

    CAS  Google Scholar 

  • Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y (2019) A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Mater Sci Eng C Mater 94:270–278

    CAS  Google Scholar 

  • Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    CAS  PubMed  Google Scholar 

  • Jiang R, Liu H, Liu M, Tian J, Huang Q, Huang H, Wen Y, Cao Q-y, Zhang X, Wei Y (2017a) A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater Sci Eng C Mater 81:416–421

    CAS  Google Scholar 

  • Jiang R, Liu M, Li C, Huang Q, Huang H, Wan Q, Wen Y, Cao Q-y, Zhang X, Wei Y (2017b) Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: synthesis, aggregation-induced emission and biological imaging. Mater Sci Eng C Mater 80:708–714

    CAS  Google Scholar 

  • Jiang R, Liu M, Huang H, Mao L, Huang Q, Wen Y, Cao Q-y, Tian J, Zhang X, Wei Y (2018) Ultrafast construction and biological imaging applications of AIE-active sodium alginate-based fluorescent polymeric nanoparticles through a one-pot microwave-assisted Döbner reaction. Dyes Pigments 153:99–105

    CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin NJC (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189

    CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    CAS  PubMed  Google Scholar 

  • Kubo R, Saito T, Isogai A (2019) Preparation and characterization of carboxylated cellulose nanofibrils with dual metal counterions. Cellulose 26:4313–4323

    CAS  Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2012) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842

    Google Scholar 

  • Lin F, Lu X, Wang Z, Lu Q, Lin G, Huang B, Lu B (2019) In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose 26:1825–1839

    CAS  Google Scholar 

  • Liu XD, Zhang L, Cheng ZP, Zhu X (2016) Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET-ATRP) via a visible light organic photocatalyst. Polym Chem 7:689–700

    CAS  Google Scholar 

  • Liu B, Yang D, Man H, Liu Y, Chen H, Xu H, Wang W, Bai L (2018) A green Pickering emulsion stabilized by cellulose nanocrystals via RAFT polymerization. Cellulose 25:77–85

    CAS  Google Scholar 

  • Liu S, Rao Z, Wu R, Sun Z, Yuan Z, Bai L, Wang W, Yang H, Chen H (2019a) Fabrication of microcapsules by the combination of biomass porous carbon and polydopamine for dual self-healing hydrogels. J Agric Food Chem 67:1061–1071

    CAS  PubMed  Google Scholar 

  • Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y (2019b) Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. Mater Sci Eng C Mater 94:310–317

    CAS  Google Scholar 

  • Lu P, Hsieh YL (2009) Cellulose nanocrystal-filled poly (acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:415604

    PubMed  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Google Scholar 

  • Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    CAS  PubMed  Google Scholar 

  • Lu C, Wang C, Yu J, Wang J, Chu F (2019) Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem 21:2759–2770

    CAS  Google Scholar 

  • Majoinen J, Walther A, Mckee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997

    CAS  PubMed  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931

    CAS  Google Scholar 

  • Ono Y, Funahashi R, Saito T, Isogai A (2018) Investigation of stability of branched structures in softwood cellulose using SEC/MALLS/RI/UV and sugar composition analyses. Cellulose 25:2667–2679

    CAS  Google Scholar 

  • Ouyang H, Zhou M, Guo Y, He M, Huang H, Ye X, Feng Y, Zhou X, Yang S (2014) Metabolites profiling of Pulsatilla saponin D in rat by ultra performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Fitoterapia 96:152–158

    CAS  PubMed  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502

    CAS  PubMed  Google Scholar 

  • Rao Z, Liu S, Wu R, Wang G, Sun Z, Bai L, Wang W, Chen H, Yang H, Wei D, Niu Y (2019) Fabrication of dual network self-healing alginate/guar gum hydrogels based on polydopamine-type microcapsules from mesoporous silica nanoparticles. Int J Biol Macromol 129:916–926

    CAS  PubMed  Google Scholar 

  • Sahoo GP, Bhui DK, Bar H, Sarkar P, Samanta S, Pyne S, Misra A (2010) Synthesis and characterization of gold nanoparticles adsorbed in methyl cellulose micro fibrils. J Mol Liq 155:91–95

    CAS  Google Scholar 

  • Shi Y, Jiang R, Liu M, Fu L, Zeng G, Wan Q, Mao L, Deng F, Zhang X, Wei Y (2017) Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater Sci Eng C Mater 77:972–977

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411

    CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Google Scholar 

  • Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791–799

    Google Scholar 

  • Sumerlin BS (2016) Proteins as Initiators of Controlled Radical Polymerization: grafting-from via ATRP and RAFT. ACS Macro Lett 1:141–145

    Google Scholar 

  • Tang L, Huang B, Lu Q, Wang S, Wen O, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour Technol 127:100–105

    CAS  PubMed  Google Scholar 

  • Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Read de Alaniz J, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136:16096–16101

    CAS  PubMed  Google Scholar 

  • Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly (N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976

    CAS  Google Scholar 

  • Wang G, Xi M, Bai L, Liang Y, Yang L, Wang W, Chen H, Yang H (2019) Pickering emulsion of metal-free photoinduced electron transfer-ATRP stabilized by cellulose nanocrystals. Cellulose 26:5947–5957

    CAS  Google Scholar 

  • Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006

    CAS  Google Scholar 

  • Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837

    CAS  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    CAS  Google Scholar 

  • Yoo MK, Lee YM, Cho CS, Sung YK (2000) Effect of polyelectrolyte on the lower critical solution temperature of poly (N-isopropyl acrylamide) in the poly (NIPAAm-co-acrylic acid) hydrogel. Polymer 41:5713–5719

    CAS  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    CAS  Google Scholar 

  • Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014a) Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym Chem 5:399–404

    CAS  Google Scholar 

  • Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014b) Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications. Polym Chem 5:356–360

    CAS  Google Scholar 

  • Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C- Mater 49:463–471

    CAS  Google Scholar 

  • Zhang X, He M, Lei S, Wu B, Tan T, Ouyang H, Xu W, Feng Y (2018a) An integrative investigation of the therapeutic mechanism of Ainsliaea fragrans Champ. in cervicitis using liquid chromatography tandem mass spectrometry based on a rat plasma metabolomics strategy. J Pharm Biomed 156:221–231

    CAS  Google Scholar 

  • Zhang X, Li J, Xie B, Wu B, Lei S, Yao Y, He M, Ouyang H, Feng Y, Xu W, Yang S (2018b) Comparative metabolomics analysis of cervicitis in human patients and a phenol mucilage-induced rat model using liquid chromatography tandem mass spectrometry. Front Pharmacol 9:282

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y-J, Ma X-Z, Gan L, Xia T, Shen J, Huang J (2018c) Fabrication of fluorescent cellulose nanocrystal via controllable chemical modification towards selective and quantitative detection of Cu (II) ion. Cellulose 25:5831–5842

    CAS  Google Scholar 

  • Zhang Z, Tam KC, Sebe G, Wang X (2018d) Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydr Polym 199:603–609

    CAS  PubMed  Google Scholar 

  • Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854

    CAS  PubMed  Google Scholar 

  • Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Österberg M, Laine J (2010) Poly (N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (Nos. 21788102, 21865016, 21474057, 21564006, 21561022, 21644014, 51673107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengjie Deng, Xiaoyong Zhang or Yen Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Mao, L., Qi, H. et al. Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP. Cellulose 27, 743–753 (2020). https://doi.org/10.1007/s10570-019-02845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02845-8

Keywords

Navigation