Luminescent and hydrophobic textile coatings with recyclability and self-healing capability against both chemical and physical damage

Abstract

Luminescent and hydrophobic textile coatings with recyclability and self-healing capability against both chemical and physical damage were prepared, which present multi-functions and long service life cycles. The applications in self-cleaning, oil-water separation, and anti-counterfeit technology were successfully demonstrated. The coatings can be easily created onto different fabrics including cotton cloth, filter paper, and chemical fabric. A rare earth organic complex of SmTTAPhen(NO3)3 (STPN), silane modified epoxy oligomer, and bis(4-maleimidophenyl)methane (BMI) provide luminescence, hydrophobicity, as well as recyclability and self-healing capability, respectively, to the coatings. More specifically, high transparency but high luminescence were achieved due to the good dispersion of STPN in coating matrix, resulting from the hydron bonding between nitrate groups from STPN and hydroxyl groups from epoxy oligomer. Silane modification facilitated the accumulation of Si–O bonds on the free-surface of the coating, which offers hydrophobic features. The introduction of reversible Diels-Alder reactions provided the self-healing capability and recyclability. Upon heating using an electronic iron, the hydrophobicity can be recovered from physical or chemical damage to the coatings. Besides, the coatings on abandoned fabrics can be recycled and reused to a new bare fabric. We believe that the concept and coating materials are useful to further expand the areas of smart and multi-functional coatings with long service life.

Graphic abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68(3):978–986. https://doi.org/10.1016/j.compscitech.2007.07.021

    CAS  Article  Google Scholar 

  2. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076. https://doi.org/10.1021/acsnano.5b00121

    CAS  Article  PubMed  Google Scholar 

  3. Chen D, Chen F, Zhang H, Yin X, Zhou Y (2016a) Preparation and characterization of novel hydro-phobic cellulose fabrics with polyvinylsilsesquioxane functional coatings. Cellulose 23(1):941–953. https://doi.org/10.1007/s10570-015-0820-y

    CAS  Article  Google Scholar 

  4. Chen J, Fang L, Xu Z, Lu C (2016b) Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light. Prog Org Coat 101:543–552. https://doi.org/10.1016/j.porgcoat.2016.09.020

    CAS  Article  Google Scholar 

  5. Chen K, Gou W, Xu L, Zhao Y (2018) Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity. Compos Sci Technol 56:177–185. https://doi.org/10.1016/j.compscitech.2017.12.036

    CAS  Article  Google Scholar 

  6. Cho EC, Chang-Jian CW, Chen HC, Chuang KS, Zheng JH, Hsiao YS, Lee KC, Huang JH (2017) Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chem Eng J 314:347–357. https://doi.org/10.1016/j.cej.2016.11.145

    CAS  Article  Google Scholar 

  7. Deng B, Cai R, Yu Y, Jiang H, Wang C, Li J, Li L, Yu M, Li J, Xie L (2010) Laundering durability of superhydrophobic cotton fabric. Adv Mater 22(48):5473–5477. https://doi.org/10.1002/adma.201002614

    CAS  Article  PubMed  Google Scholar 

  8. Erdman A, Kulpinski P, Grzyb T, Lis S (2016) Preparation of multicolor luminescent cellulose fibers containing lanthanide doped inorganic nanomaterials. J Lumin 169:520–527. https://doi.org/10.1016/j.jlumin.2015.02.049

    CAS  Article  Google Scholar 

  9. Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24(16):2322–2333. https://doi.org/10.1002/adfm.201303013

    CAS  Article  Google Scholar 

  10. Fang L, Chen J, Zou Y, Xu Z, Lu C (2017) Thermally-induced self-healing behaviors and properties of four epoxy coatings with different network architectures. Polymers 9(8):333. https://doi.org/10.3390/polym9080333

    CAS  Article  PubMed Central  Google Scholar 

  11. Gu S, Yang L, Huang W, Bu Y, Chen D, Huang J, Zhou Y, Xu W (2017) Fabrication of hydropho-bic cotton fabrics inspired by polyphenol chemistry. Cellulose 24(6):2635–2646. https://doi.org/10.1007/s10570-017-1274-1

    CAS  Article  Google Scholar 

  12. Guo X, Zhang K, Zhang H, Ge M (2018) Working conditions on the afterglow characteristics of rare-earth luminous fibers. Fiber Polym 19(3):531–537. https://doi.org/10.1007/s12221-018-7376-z

    CAS  Article  Google Scholar 

  13. Hansen CJ, Wu W, Toohey KS, Sottos NR, White SR, Lewis JA (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21(41):4143–4147. https://doi.org/10.1002/adma.200900588

    CAS  Article  Google Scholar 

  14. Hsieh HC, Chen JY, Lee WY, Bera D, Chen WC (2018) Stretchable fluorescent polyfluorene/acrylonitrile butadiene rubber blend electrospun fibers through physical interaction and geometrical confinement. Macromol Rapid Commun 39(5):1700616. https://doi.org/10.1002/marc.201700616

    CAS  Article  Google Scholar 

  15. Ishida K, Yoshie N (2008) Synthesis of readily recyclable biobased plastics by Diels–Alder reaction. Macromol Biosci 8(10):916–922. https://doi.org/10.1002/mabi.200800078

    CAS  Article  PubMed  Google Scholar 

  16. Khattab TA, Rehan M, Hamdy Y, Shaheen TI (2018) Facile development of photoluminescent textile fabric via spray coating of Eu(II)-doped strontium aluminate. Ind Eng Chem Res 57(34):11483–11492. https://doi.org/10.1021/acs.iecr.8b01594

    CAS  Article  Google Scholar 

  17. Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42(19):8020–8024. https://doi.org/10.1007/s10853-007-1572-3

    CAS  Article  Google Scholar 

  18. Kulpinski P, Erdman A, Grzyb T, Lis S (2016) Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles. Polym Composite 37(1):153–160. https://doi.org/10.1002/pc.23166

    CAS  Article  Google Scholar 

  19. Lai WJ, Cheng KC (2018) Crystallization and luminescence properties of polypropylene fiber containing rare earth aluminates and a sorbital derivative nucleating agent. Fiber Polym 19(1):22–30. https://doi.org/10.1007/s12221-018-1089-6

    CAS  Article  Google Scholar 

  20. Li Y, Li L, Sun J (2010) Bioinspired self-healing superhydrophobic coatings. Angew Chem Int Edit 122(35):6265–6269. https://doi.org/10.1002/anie.201001258

    CAS  Article  Google Scholar 

  21. Li Y, Chen S, Wu M, Sun J (2014) All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv Mater 26(20):3344–3348. https://doi.org/10.1002/adma.201306136

    CAS  Article  PubMed  Google Scholar 

  22. Li Y, Ge B, Men X, Zhang Z, Xue Q (2016) A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics. Compos Sci Technol 125:55–61. https://doi.org/10.1016/j.compscitech.2016.01.021

    CAS  Article  Google Scholar 

  23. Liu YL, Chuo TW (2013) Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem 4(7):2194–2205. https://doi.org/10.1039/C2PY20957H

    CAS  Article  Google Scholar 

  24. Liu Y, Xin JH, Choi CH (2012) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28(50):17426–17434. https://doi.org/10.1021/la303714h

    CAS  Article  PubMed  Google Scholar 

  25. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748. https://doi.org/10.1021/ma0511189

    CAS  Article  Google Scholar 

  26. Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner-Kowollik C (2014) Adaptable hetero Diels–Alder networks for fast self-healing under mild conditions. Adv Mater 26(21):3561–3566. https://doi.org/10.1002/adma.201306258

    CAS  Article  PubMed  Google Scholar 

  27. Park HJ, Kim S, Lee JH, Kim HT, Seung W, Son Y, Kim TY, Khan U, Park NM, Kim SW (2019) Self-powered motion-driven triboelectric electroluminescence textile system. ACS Appl Mater Inter 11(5):5200–5207. https://doi.org/10.1021/acsami.8b16023

    CAS  Article  Google Scholar 

  28. Pereira C, Alves C, Monteiro A, Magén C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB, Araújo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Inter 3(7):2289–2299. https://doi.org/10.1021/am200220x

    CAS  Article  Google Scholar 

  29. Pratama PA, Peterson AM, Palmese GR (2012) Diffusion and reaction phenomena in solution-based healing of polymer coatings using the Diels–Alder reaction. Macromol Chem Phys 213(2):173–181. https://doi.org/10.1002/macp.201100407

    CAS  Article  Google Scholar 

  30. Pratama PA, Sharifi M, Peterson AM, Palmese GR (2013) Room temperature self-healing thermoset based on the Diels–Alder reaction. ACS Appl Mater Int 5(23):12425–12431. https://doi.org/10.1021/am403459e

    CAS  Article  Google Scholar 

  31. Przybylak M, Maciejewski H, Dutkiewicz A (2016) Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process. Appl Surf Sci 387:163–174. https://doi.org/10.1016/j.apsusc.2016.06.094

    CAS  Article  Google Scholar 

  32. Qian L, Sun G (2004) Durable and regenerable antimicrobial textiles: improving efficacy and du- rability of biocidal functions. J Appl Polym Sci 91(4):2588–2593. https://doi.org/10.1002/app.13428

    CAS  Article  Google Scholar 

  33. Qiang S, Chen K, Yin Y, Wang C (2017) Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability. Mater Design 116:395–402. https://doi.org/10.1016/j.matdes.2016.11.099

    CAS  Article  Google Scholar 

  34. Roy N, Bruchmann B, Lehn JM (2015) DYNAMERS: dynamic polymers as self-healing material -s. Chem Soc Rev 44(11):3786–3807. https://doi.org/10.1002/chin.201530328

    CAS  Article  PubMed  Google Scholar 

  35. Samadzadeh M, Boura SH, Peikari M, Kasiriha SM, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68(3):159–164. https://doi.org/10.1016/j.porgcoat.2010.01.006

    CAS  Article  Google Scholar 

  36. Scheltjens G, Diaz MM, Brancart J, Van Assche G, Van Mele B (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73(2):413–420. https://doi.org/10.1016/j.reactfunctpolym.2012.06.017

    CAS  Article  Google Scholar 

  37. Shi Z, Wyman I, Liu G, Hu H, Zou H, Hu J (2013) Preparation of water-repellent cotton fabrics from fluorinated diblock copolymers and evaluation of their durability. Polymer 54(23):6406–6414. https://doi.org/10.1016/j.polymer.2013.09.043

    CAS  Article  Google Scholar 

  38. Skwierczyńska M, Runowski M, Kulpiński P, Lis S (2019) Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohyd Polym 206(742–74):8. https://doi.org/10.1016/j.carbpol.2018.11.058

    CAS  Article  Google Scholar 

  39. Suryaprabha T, Sethuraman MG (2017) Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose 24(1):395–407. https://doi.org/10.1007/s10570-016-1110-z

    CAS  Article  Google Scholar 

  40. Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56(19):5737–5750. https://doi.org/10.1016/j.actamat.2008.08.008

    CAS  Article  Google Scholar 

  41. Wang X, Gao W, Xu S, Xu W (2012) Luminescent fibers: in situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chem Eng J 210:585–589. https://doi.org/10.1016/j.cej.2012.09.034

    CAS  Article  Google Scholar 

  42. Wang H, Chen L, Fang L, Li L, Fang J, Lu C, Xu Z (2018) Supramolecular hydrogel hybrids having high mechanical property, photoluminescence and light-induced shape deformation capability: design, preparation and characterization. Mater Des 160:194–202. https://doi.org/10.1016/j.matdes.2018.09.018

    CAS  Article  Google Scholar 

  43. Wang H, Fang L, Zhang Z, Epaarachchi J, Li L, Hu X, Lu C, Xu Z (2019) Light-induced rare earth organic complex/shape-memory polymer composites with high strength and luminescence based on hydrogen bonding. Compos Part A-Appl S 125:105525. https://doi.org/10.1016/j.compositesa.2019.105525

    CAS  Article  Google Scholar 

  44. Xi P, Zhao T, Xia L, Shu D, Ma M, Cheng B (2017) Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci Rep 7:40390. https://doi.org/10.1038/srep40390

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Xiong Z, Lin H, Zhong Y, Qin Y, Li T, Liu F (2017) Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. J Mater Chem A 5(14):6538–6545. https://doi.org/10.1039/C6TA11156D

    CAS  Article  Google Scholar 

  46. Xue CH, Ji PT, Zhang P, Li YR, Jia ST (2013) Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Appl Surf Sci 284:464–471. https://doi.org/10.1016/j.apsusc.2013.07.120

    CAS  Article  Google Scholar 

  47. Xue CH, Zhang ZD, Zhang J, Jia ST (2014) Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane. J Mater Chem A 2(36):15001–15007. https://doi.org/10.1039/c4ta02396j

    CAS  Article  Google Scholar 

  48. Ye J, Wang B, Xiong J, Sun R (2016) Enhanced fluorescence and structural characteristics of car-boxymethyl cellulose/Eu(III) nano-complex: influence of reaction time. Carbohyd Polym 135(5):7–63. https://doi.org/10.1016/j.carbpol.2015.08.063

    CAS  Article  Google Scholar 

  49. Ye H, Zhu L, Li W, Liu H, Chen H (2017) Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. J Mater Chem A 5(20):9882–9890. https://doi.org/10.1039/c7ta02118f

    CAS  Article  Google Scholar 

  50. Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khadem- hosseini A A, Yun SH (2016) Nanotechnology in Textiles. ACS Nano 10(3):3042–3068. https://doi.org/10.1021/acsnano.5b08176

    CAS  Article  PubMed  Google Scholar 

  51. Yoo Y, You JB, Choi W, Im SG (2013) A stacked polymer film for robust superhydrophobic fabrics. Polym Chem 4(5):1664–1671. https://doi.org/10.1039/C2PY20963B

    CAS  Article  Google Scholar 

  52. Yu H, Song H, Pan G, Li S, Liu Z, Bai X, Wang T, Lu S, Zhao H (2007) Preparation and luminescent properties of europium-doped yttria fibers by electrospinning. J Lumin 124(1):39–44. https://doi.org/10.1016/j.jlumin.2006.01.360

    CAS  Article  Google Scholar 

  53. Zang X, Shen L, Pun E, Guo J, Lin H (2017) Photon quantification of electrospun europium-complexes/PMMA submicron fibers. J Alloy Compd 709:620–626. https://doi.org/10.1016/j.jallcom.2017.03.178

    CAS  Article  Google Scholar 

  54. Zhang M, Li J, Zang D, Lu Y, Gao Z, Shi J, Wang C (2016) Preparation and characterization of cotton fabric with potential use in UV resistance and oil reclaim. Carbohyd Polym 137:264–270. https://doi.org/10.1016/j.carbpol.2015.10.087

    CAS  Article  Google Scholar 

  55. Zhang Z, Chang H, Xue B, Han Q, Lü X, Zhang S, Li X, Zhu X, Wong W-K, Li K (2017) New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose. Opt Mater 73:747–753. https://doi.org/10.1016/j.optmat.2017.09.039

    CAS  Article  Google Scholar 

  56. Zhang H, Hou C, Song L, Ma Y, Ali Z, Gu J, Zhang B, Zhang H, Zhang Q (2018a) A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chem Eng J 334:598–610. https://doi.org/10.1016/j.cej.2017.10.036

    CAS  Article  Google Scholar 

  57. Zhang Zh, Hj Wang, Liang Yh, Xj Li, Lq Ren, Zq Cui, Luo C (2018b) One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Sci Rep 8(1):3869. https://doi.org/10.1038/s41598-018-22241-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013a) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Int 5(15):7208–7214. https://doi.org/10.1021/am4015346

    CAS  Article  Google Scholar 

  59. Zhou H, Wang H, Niu H, Gestos A, Lin T (2013b) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670. https://doi.org/10.1002/adfm.201202030

    CAS  Article  Google Scholar 

  60. Zhou C, Chen Z, Yang H, Hou K, Zeng X, Zheng Y, Cheng J (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl mater inter 9(10):9184–9194. https://doi.org/10.1021/acsami.7b00412

    CAS  Article  Google Scholar 

  61. Zimmermann J, Artus GRJ, Seeger S (2007) Long term studies on the chemical stability of a sup-erhydrophobic silicone nanofilament coating. Appl Surf Sci 253(14):5972–5979. https://doi.org/10.1016/j.apsusc.2006.12.118

    CAS  Article  Google Scholar 

  62. Zimmermann J, Reifler FA, Fortunato G, Gerhardt LC, Seeger S (2008a) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18(22):3662–3669. https://doi.org/10.1002/adfm.200800755

    CAS  Article  Google Scholar 

  63. Zimmermann J, Artus GRJ, Seeger S (2008b) Superhydrophobic silicone nanofilament coatings. J Adhes Sci Technol 22(3–4):251–263. https://doi.org/10.1163/156856108X305165

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Natural Science Foundation of Jiangsu Province (No. BK20191364) and National Natural Science Foundation of China (51503098). Financial support from Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liang Fang or Chunhua Lu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The physical and chemical damage on a coated fabric and the self-healing procedure using an electronic iron (MP4 7266 kb)

10570_2019_2819_MOESM2_ESM.mp4

The recycling process of coated fabrics in DMF (MP4 14234 kb)

Video 2

The recycling process of coated fabrics in DMF (MP4 14234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zou, Y., Zhang, Z. et al. Luminescent and hydrophobic textile coatings with recyclability and self-healing capability against both chemical and physical damage. Cellulose 27, 561–573 (2020). https://doi.org/10.1007/s10570-019-02819-w

Download citation

Keywords

  • Fabric coating
  • Self-healing
  • Diels–alder reaction
  • Luminescence
  • Hydrophobicity