Awano T, Takabe K, Fujita M (1998) Localization of glucuronoxylans in Japanese beech visualized by immunogold labelling. Protoplasma 202:213–222. https://doi.org/10.1007/BF01282549
CAS
Article
Google Scholar
Awano T, Takabe K, Fujita M (2002) Xylan deposition on secondary wall of Fagus crenata fiber. Protoplasma 219:106–115. https://doi.org/10.1007/s007090200011
CAS
Article
PubMed
Google Scholar
Balakshin M, Capanema E, Gracz H et al (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110. https://doi.org/10.1007/s00425-011-1359-2
CAS
Article
Google Scholar
Brown SP, Eduardo R, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun 7:13902. https://doi.org/10.1038/ncomms13902
CAS
Article
PubMed
PubMed Central
Google Scholar
Browning BL (1967) Methods of wood chemistry, vol 2. Wiley, New York
Google Scholar
Clauss J, Schmidt-Rohr K, Spiess HW (1993) Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym 44:1–17. https://doi.org/10.1002/actp.1993.010440101
CAS
Article
Google Scholar
Endo T, Kitagawa R, Hirotsu T, Hosokawa J (1999) Fine-powdering of fibrous cellulose by mechanical milling. Kobunshi Ronbunshu 56:166–173. https://doi.org/10.1295/koron.56.166
CAS
Article
Google Scholar
Foston M, Katahira R, Gjersing E, Davis MF, Ragauskas AJ (2012) Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. J Agric Food Chem 60:1419–1427. https://doi.org/10.1021/jf204853b
CAS
Article
PubMed
Google Scholar
Furuta Y, Okuyama T, Kojiro K, Miyoshi Y, Kiryu T (2014) Temperature dependence of the dynamic viscoelasticity of bases. J Wood Sci 60:249–254. https://doi.org/10.1007/s10086-014-1402-6
CAS
Article
Google Scholar
Gil AM, Neto CP (1999) Solid-State NMR studies of wood and other lignocellulosic materials. Annu Rep NMR Spectrosc 37:75–117. https://doi.org/10.1016/S0066-4103(08)60014-9
CAS
Article
Google Scholar
Irvine GM (1984) The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi J 67:118–121
CAS
Google Scholar
Ishiguro M, Endo T (2015) Effect of the addition of calcium hydroxide on the hydrothermal-mechanochemical treatment of Eucalyptus. Bioresour Technol 177:298–301. https://doi.org/10.1016/j.biortech.2014.10.135
CAS
Article
PubMed
Google Scholar
Joseleau JP, Ruel K (1997) Study of lignification by noninvasive techniques in growing maize internodes (an investigation by fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol 114:1123–1133. https://doi.org/10.1104/pp.114.3.1123
CAS
Article
PubMed
PubMed Central
Google Scholar
Joseleau J-P, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345. https://doi.org/10.1007/s00425-004-1226-5
CAS
Article
PubMed
Google Scholar
Kaplan DS (1976) Structure–property relationships in copolymers to composites: molecular interpretation of the glass transition phenomenon. J Appl Polym Sci 20:2615–2629. https://doi.org/10.1002/app.1976.070201001
CAS
Article
Google Scholar
Kelley SS, Rials TG, Glasser WG (1987) Relaxation behaviour of the amorphous components of wood. J Mater Sci 22:617–624. https://doi.org/10.1007/BF01160778
CAS
Article
Google Scholar
Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellul Chem Technol 9:563–573
Google Scholar
Kohn B, Davis M, Maciel GE (2011) In situ study of dilute H2SO4 pretreatment of 13C-enriched poplar. Energy Fuels 25:2301–2313. https://doi.org/10.1021/ef2000213
CAS
Article
Google Scholar
Kumagai A, Endo T (2018) Comparison of the surface constitutions of hemicelluloses on lignocellulosic nanofibers prepared from softwood and hardwood. Cellulose 25:1–13. https://doi.org/10.1007/s10570-018-1861-9
CAS
Article
Google Scholar
Kumagai A, Iwamoto S, Lee S, Endo T (2014) Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils. Cellulose 21:2433–2444. https://doi.org/10.1007/s10570-014-0312-5
CAS
Article
Google Scholar
Kumagai A, Lee S, Endo T (2016) Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Biotechnol Bioeng 113:1441–1447. https://doi.org/10.1002/bit.25911
CAS
Article
PubMed
Google Scholar
MacKnight WJ, Karasz FE, Fried JR (1978) Solid state transition behavior of blends. In: Paul DR, Newman S (eds) Polymer blends. Academic Press, New York, pp 184–243
Chapter
Google Scholar
Maeda Y, Awano T, Takabe K, Fujita M (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213:148–156. https://doi.org/10.1007/BF01282152
CAS
Article
Google Scholar
Masson JF, Manley RS (1991) Cellulose/poly(4-vinylpyridine) blends. Macromolecules 24:5914–5921. https://doi.org/10.1021/ma00022a004
CAS
Article
Google Scholar
Maunu SL (2002) NMR studies of wood and wood products. Prog Nucl Magn Reson Spectrosc 40:151–174. https://doi.org/10.1016/S0079-6565(01)00041-3
CAS
Article
Google Scholar
McBrierty VJ, Douglass DC (1981) Recent advances in the NMR of solid polymers. J Polym Sci Macromol Rev 16:295–366. https://doi.org/10.1002/pol.1981.230160105
CAS
Article
Google Scholar
Nishida M, Tanaka T, Miki T, Shigematsu I, Kanayama K (2014) Study of nanoscale structural changes in isolated bamboo constituents using multiscale instrumental analyses. J Appl Polym Sci 131:40243. https://doi.org/10.1002/app.40243
CAS
Article
Google Scholar
Nishio Y (2017) General remarks on cellulosic blends and copolymers. In: Navard P (ed) Blends and graft copolymers of cellulosics: toward the design and development of advanced films and fibers. Springerbriefs in molecular science. Biobased Polymers. Springer, Cham, pp 1–16
Google Scholar
Olabisi O, Robeson L, Shaw M (1979) Polymer–polymer miscibility. Academic Press, New York
Book
Google Scholar
Östberg G, Salmén L, Terlecki J (1990) Softening temperature of moist wood measured by differential scanning calorimetry. Holzforschung 44:223–225. https://doi.org/10.1515/hfsg.1990.44.3.223
Article
Google Scholar
Pandey KK, Pitman AJ (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and fourier transform infrared. J Polym Sci, Part A: Polym Chem 42:2340–2346. https://doi.org/10.1002/pola.20071
CAS
Article
Google Scholar
Rojo E, Peresin MS, Sampson WW, Hoeger IC, Varitianen J, Rojas OJ (2015) Residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/c4gc02398f
CAS
Article
Google Scholar
Ruel K, Barnoud F, Goring DAI (1978) Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci Technol 12:287–291. https://doi.org/10.1007/BF00351930
Article
Google Scholar
Saito K, Horikawa Y, Sugiyama J, Watanabe T (2016) Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: comparison of acid, alkali, and water pretreatments. J Wood Sci 62:276–284. https://doi.org/10.1007/s10086-016-1543-x
CAS
Article
Google Scholar
Salmén L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Pap Sci 24:99–103
Google Scholar
Sipponen MH, Laakso S, Baumberger S (2014) Impact of ball milling on maize (Zea mays L.) stem structural components and on enzymatic hydrolysis of carbohydrates. Ind Crops Prod 61:130–136. https://doi.org/10.1016/j.indcrop.2014.06.052
CAS
Article
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). NREL/TP-510-42618
Takamura A (1968) Studies on hot pressing and drying process in the production of fibreboard. III. Softening of fibre components in hot pressing of fibre mat. Mokuzai Gakkaishi 14:75–79
Google Scholar
Teramoto Y, Lee S-H, Endo T (2008a) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863. https://doi.org/10.1016/j.biortech.2008.04.049
CAS
Article
PubMed
Google Scholar
Teramoto Y, Tanaka N, Lee S-H, Endo T (2008b) Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnol Bioeng 99:75–85
CAS
Article
Google Scholar
Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416. https://doi.org/10.1007/s10086-009-1049-x
CAS
Article
Google Scholar
Terashima N, Yoshida M, Hafrén J, Fukushima K, Westermark U (2012) Proposed supramolecular structure of lignin in softwood tracheid compound middle lamella regions. Holzforschung 66:907–915. https://doi.org/10.1515/hf-2012-0021
CAS
Article
Google Scholar
Uraki Y, Sugiyama Y, Koda K et al (2012) Thermal mobility of β-O-4-type artificial lignin. Biomacromol 13:867–872. https://doi.org/10.1021/bm201772v
CAS
Article
Google Scholar
Utracki L (1990) Polymer alloys and blends: thermodynamics and rheology. Hanser, Munich/New York
Google Scholar
Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43
CAS
Google Scholar
Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresour Technol 101:2900–2903. https://doi.org/10.1016/j.biortech.2009.12.015
CAS
Article
PubMed
Google Scholar