Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications

Abstract

Biodegradable cellulose aerogels have been successfully prepared from coir fibers using a sulfur-free method and NaOH–urea system. Sulfur was avoided during pretreatment because it is environmentally harmful. Interestingly, these pretreatments had a strong effect on the physical properties of the aerogels produced. Good physical properties of the cellulose aerogels were obtained when the Kappa number, i.e., the lignin content, in the pulp was lower than 14.8. NaOH–urea played an important role in transforming cellulose I to cellulose II and crosslinked cellulose to form an aerogel structure. The aerogel had a macroporous structure, ultralight density, high porosity, good durability, and thermal stability. The aerogel was capable of absorbing 22 and 18 times its dry weight in water and oil, respectively. The material also had a high capacity for methylene blue dye adsorption of up to 62 g/g, which was one hundred times higher than that of adsorbents synthesized from the other natural matters. Therefore, the prepared aerogels have potential for various sorption applications.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129. https://doi.org/10.1016/j.carbpol.2008.07.008

    CAS  Article  Google Scholar 

  2. Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433. https://doi.org/10.1007/s10570-011-9631-y

    CAS  Article  Google Scholar 

  3. Baldanza VAR, Souza FG, Filho ST, Franco HA, Oliveira GE, Caetano RMJ, Hernandez JAR, Ferreira Leite SG, Furtado Sousa AM, Nazareth Silva AL (2018) Controlled-release fertilizer based on poly(butylene succinate)/urea/clay and its effect on lettuce growth. J Appl Polym Sci 135:51–60. https://doi.org/10.1002/app.46858

    CAS  Article  Google Scholar 

  4. Budde PK, Megha R, Patel R, Pandey J (2019) Investigating effects of temperature on fuel properties of torrefied biomass for bio-energy systems. Energy Sources Part A Recover Util Environ Eff 41:1140–1148. https://doi.org/10.1080/15567036.2018.1544992

    CAS  Article  Google Scholar 

  5. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. https://doi.org/10.1002/mabi.200400222

    CAS  Article  Google Scholar 

  6. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189. https://doi.org/10.1021/bm0505585

    CAS  Article  PubMed  Google Scholar 

  7. Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161. https://doi.org/10.1002/cssc.201300950

    CAS  Article  PubMed  Google Scholar 

  8. Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91. https://doi.org/10.1016/j.carbpol.2015.02.054

    CAS  Article  PubMed  Google Scholar 

  9. Chen M, Zhang X, Zhang A, Liu C, Sun R (2016) Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose 23:1325–1334. https://doi.org/10.1007/s10570-015-0814-9

    CAS  Article  Google Scholar 

  10. Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636. https://doi.org/10.1007/s10570-014-0314-3

    CAS  Article  Google Scholar 

  11. Foster JJ, Forge C (1993) Kappa number calibration standard 1–7. Westvaco Corporation, New York, US Patent 5194388

  12. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  13. French AD, Santiago Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    CAS  Article  Google Scholar 

  14. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277. https://doi.org/10.1021/bm700972k

    CAS  Article  PubMed  Google Scholar 

  15. Grishechko LI, Amaral-Labat G, Szczurek A, Fierro V, Kuznetsov BN, Pizzi A, Celzard A (2013) New tannin–lignin aerogels. Ind Crops Prod 41:347–355. https://doi.org/10.1016/j.indcrop.2012.04.052

    CAS  Article  Google Scholar 

  16. Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804. https://doi.org/10.1016/j.actamat.2011.04.022

    CAS  Article  Google Scholar 

  17. Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245:284–297. https://doi.org/10.1016/j.desal.2008.07.013

    CAS  Article  Google Scholar 

  18. Han Y, Zhang X, Wu X, Lu C (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859. https://doi.org/10.1021/acssuschemeng.5b00438

    CAS  Article  Google Scholar 

  19. Ioelovich M, Leykin A, Figovsky O (2010) Study of cellulose paracrystallinity. BioResources 5:1393–1407

    CAS  Google Scholar 

  20. Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20:97–103. https://doi.org/10.1007/s10570-012-9800-7

    CAS  Article  Google Scholar 

  21. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dye Pigment 51:25–40. https://doi.org/10.1016/S0143-7208(01)00056-0

    CAS  Article  Google Scholar 

  22. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS (2019) Isolation and characterization of cellulose fi bers from Thespesia populnea barks: a study on physicochemical and structural properties. Int J Biol Macromol 129:396–406. https://doi.org/10.1016/j.ijbiomac.2019.02.044

    CAS  Article  PubMed  Google Scholar 

  23. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816. https://doi.org/10.1021/am200475b

    CAS  Article  PubMed  Google Scholar 

  24. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    CAS  Article  Google Scholar 

  25. Li J, Wan C, Lu Y, Sun Q (2014) Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Agric Sci Eng 1:46–52. https://doi.org/10.15302/J-FASE-2014004

    CAS  Article  Google Scholar 

  26. Li S, Warzywoda J, Wang S, Ren G, Fan Z (2017) Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium–sulfur batteries. Carbon 124:212–218. https://doi.org/10.1016/j.carbon.2017.08.062

    CAS  Article  Google Scholar 

  27. Li Y, Li Z, Shen G, Zhan Y (2019) Paper conservation with an aqueous NaOH/urea cellulose solution. Cellulose 3:4589–4599. https://doi.org/10.1007/s10570-019-02375-3

    CAS  Article  Google Scholar 

  28. Liang H, Wu Z, Chen L, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nano fiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376. https://doi.org/10.1016/j.nanoen.2014.11.008

    CAS  Article  Google Scholar 

  29. Liu K, Li H, Zhang J, Zhang Z, Xu J (2016) The effect of non-structural components and lignin on hemicellulose extraction. Bioresour Technol 214:755–760. https://doi.org/10.1016/j.biortech.2016.05.036

    CAS  Article  PubMed  Google Scholar 

  30. Liu Z, Wu J, Xia J, Dai H, Cao Y, Wang Z (2019) Characterization of lignocellulose aerogels fabricated using a LiCl/DMSO solution. Ind Crops Prod 131:293–300. https://doi.org/10.1016/j.indcrop.2019.01.057

    CAS  Article  Google Scholar 

  31. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544. https://doi.org/10.1046/j.1365-313X.2003.01817.x

    CAS  Article  PubMed  Google Scholar 

  32. Lu Y, Sun Q, Yang D, She X, Yao X, Zhu G, Liu Y, Zhao H, Li J (2012) Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. J Mater Chem 22:13548–13557. https://doi.org/10.1039/c2jm31310c

    CAS  Article  Google Scholar 

  33. Maher M, Prasad M, Raviv M (2008) Organic soilless media components. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier B.V, Amsterdam, pp 459–504

    Google Scholar 

  34. Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr Polym 136:1194–1202. https://doi.org/10.1016/j.carbpol.2015.09.099

    CAS  Article  PubMed  Google Scholar 

  35. Mussana H, Yang X, Tessima M, Han F, Iqbal N (2018) Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid- based co-solvent system. Ind Crop Prod 113:225–233. https://doi.org/10.1016/j.indcrop.2018.01.025

    CAS  Article  Google Scholar 

  36. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    CAS  Article  PubMed  Google Scholar 

  37. Nazriati N, Setyawan H, Affandi S, Yuwana M, Winardi S (2014) Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying. J Non Cryst Solids 400:6–11. https://doi.org/10.1016/j.jnoncrysol.2014.04.027

    CAS  Article  Google Scholar 

  38. Nguyen ST, Feng J, Le NT, Le ATT, Hoang N, Tan VBC, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391. https://doi.org/10.1021/ie4032567

    CAS  Article  Google Scholar 

  39. Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134. https://doi.org/10.1016/j.colsurfa.2014.01.015

    CAS  Article  Google Scholar 

  40. Oh SY, Il Yoo D, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428. https://doi.org/10.1016/j.carres.2004.11.027

    CAS  Article  PubMed  Google Scholar 

  41. Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182. https://doi.org/10.1002/app.1984.070291247

    CAS  Article  Google Scholar 

  42. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588. https://doi.org/10.1038/nnano.2010.155

    CAS  Article  PubMed  Google Scholar 

  43. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. https://doi.org/10.1039/b810371b

    CAS  Article  Google Scholar 

  44. Qi H, Mader E, Liu J (2013) Electrically conductive aerogels composed of cellulose and carbon nanotubes. J Mater Chem A 1:9714–9720. https://doi.org/10.1039/c3ta11734k

    CAS  Article  Google Scholar 

  45. Reddy KO, Ashok B, Reddy KRN, Feng YE, Zhang J, Rajulu AV (2014) Extraction and characterization of novel lignocellulosic fibers from Thespesia lampas plant. Int J Polym Anal Charact 19:48–61. https://doi.org/10.1080/1023666X.2014.854520

    CAS  Article  Google Scholar 

  46. Salas C, Ago M, Lucia LA, Rojas OJ (2014) Synthesis of soy protein–lignin nanofibers by solution electrospinning. React Funct Polym 85:221–227. https://doi.org/10.1016/j.reactfunctpolym.2014.09.022

    CAS  Article  Google Scholar 

  47. Sarko A, Nishimura H, Okano T (1987) Crystalline alkali–cellulose complexes as intermediates during mercerization. In: Atalla RH (ed) The structure of cellulose. American Chemical Society, Washington, DC, pp 169–177

    Google Scholar 

  48. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 43:786–794

    Article  Google Scholar 

  49. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774. https://doi.org/10.1016/j.carbpol.2010.10.043

    CAS  Article  Google Scholar 

  50. Shen R, Li H (2016) Effects of impurities in alkali-extracted xylan on its enzymatic hydrolysis to produce. Appl Biochem Biotechnol 179:740–752. https://doi.org/10.1007/s12010-016-2028-5

    CAS  Article  PubMed  Google Scholar 

  51. Shen Z, Han G, Wang X, Luo J, Sun R (2017) An ultra-light antibacterial bagasse–AgNP aerogel. J Mater Chem B 5:1155–1158. https://doi.org/10.1039/C6TB02171A

    CAS  Article  Google Scholar 

  52. Socha AM, Plummer SP, Stavila V, Simmons BA, Singh S (2013) Comparison of sugar content for ionic liquid pretreated Douglas-fir woodchips and forestry residues. Biotechnol Biofuels 6:1–10. https://doi.org/10.1186/1754-6834-6-61

    CAS  Article  Google Scholar 

  53. Song J, Zou W, Bian Y, Su F, Han R (2011) Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265:119–125. https://doi.org/10.1016/j.desal.2010.07.041

    CAS  Article  Google Scholar 

  54. Thomas HC (1944) Heterogenous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    CAS  Article  Google Scholar 

  55. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. https://doi.org/10.1007/s10570-005-9001-8

    CAS  Article  Google Scholar 

  56. Wan C, Li J (2016) Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties. Appl Phys A Mater 122:1–7. https://doi.org/10.1007/s00339-016-9641-6

    CAS  Article  Google Scholar 

  57. Wan C, Lu Y, Jiao Y (2015a) Preparation of mechanically strong and lightweight cellulose aerogels from cellulose–NaOH/PEG solution. J Sol Gel Sci Technol 74:256–259. https://doi.org/10.1007/s10971-015-3633-4

    CAS  Article  Google Scholar 

  58. Wan C, Lu Y, Jiao Y, Jin C, Sun Q, Li J (2015b) Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. J Appl Polym Sci 42037:1–7. https://doi.org/10.1002/app.42037

    CAS  Article  Google Scholar 

  59. Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475. https://doi.org/10.1016/j.cej.2018.11.115

    CAS  Article  Google Scholar 

  60. Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96. https://doi.org/10.1016/j.marpolbul.2013.01.007

    CAS  Article  PubMed  Google Scholar 

  61. Wang S, Peng X, Zhong L, Tan J, Jing S, Cao X, Chen W, Liu C, Sun R (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781. https://doi.org/10.1039/C4TA07057G

    CAS  Article  Google Scholar 

  62. Wertz J-L, Bedue O, Mercier JP (2010) Structure and properties of cellulose (chapter 3). In: Press E (ed) Cellulose science and technology, 1st edn. EPFL Press, Lausanne, pp 87–146

    Google Scholar 

  63. Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192. https://doi.org/10.1007/s10570-014-0221-7

    CAS  Article  Google Scholar 

  64. Yu M, Li J, Wang L (2017) KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310:300–306. https://doi.org/10.1016/j.cej.2016.10.121

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Research, Technology and Higher Education, Indonesia through a PMDSU Research Grant (Contract Numbers 15304/IT2.11/HK.00.02/2016, 77186/IT2.VII/HK.00.02/2017, and 798/PKS/ITS/2018). One of the authors (M.F.) would like to thank the Ministry of Research, Technology and Higher Education, Indonesia, for a doctoral scholarship through PMDSU. We thank Ms. Tiara Nur Pratiwi and Mr. Muhammad Abid Hidayatullah for their assistance with the experiments. We also thank Ms. Annie Mufyda Rahmatika for the TGA analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heru Setyawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fauziyah, M., Widiyastuti, W., Balgis, R. et al. Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26, 9583–9598 (2019). https://doi.org/10.1007/s10570-019-02753-x

Download citation

Keywords

  • NaOH–urea system
  • Absorbent
  • Adsorbent
  • Coir fibers
  • Cellulose aerogel