Skip to main content

Cross-linked cellulose nano-sponges: a small angle neutron scattering (SANS) study

Abstract

Cellulose nano-sponges (CNS), obtained by cross-linking TEMPO oxidized and ultra-sonicated cellulose nano-fibers (TOUS-CNFs) with branched polyethyleneimine (bPEI), underwent here a systematic small angle neutron scattering investigation, by varying the amount of cross-linker and the water content. The aim was to provide experimental evidence of nano-porosity in the TOUS-CNF network of these nano-sponges (CNSs) by investigating the water nano-confinement geometries in the adsorbent material. Moreover, we also verified how the breaking/reformation of specific intermolecular hydrogen bond interactions between water and the chemical groups present in the architecture of the CNSs could contribute to regulate the water adsorption process observed at macroscopic level. The analysis of the experimental data, performed in terms of the correlation length model, allowed us to extract the short-range correlation length ξ, interpreted as a very first indirect estimation of the effective nano-dimension of the cavities produced by the cross-linking of the reticulated cellulose nano-fibers. From the model, power-law (n) and Lorentzian (m) exponents have been also obtained, associated with the density of TOUS-CNFs at high (larger than hundreds of Å) and low (~ 10–100 Å) spatial scales, respectively. These parameters were all sensitive to the structural variations induced by the progressive uptake of water on the bPEI/TOUS-CNF sponges with different bPEI:TOUS-CNF (w/w) ratios. Finally, we investigated the effect of the addition of citric acid in the CNS formulation, confirming its role in increasing cross-linking density and sponge rigidity. The obtained results appear crucial in order to rationalize the design of these sponges and to track the changes in the ability of the final products as efficient nano-confinement systems for water.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agrawal SK, Sanabria-DeLong N, Jemian PR, Tew GN, Bhatia SR (2007) Micro- to nanoscale structure of biocompatible PLA–PEO–PLA hydrogels. Langmuir 23:5039–5044

    PubMed  CAS  Google Scholar 

  2. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Cryst 29:134–146

    CAS  Google Scholar 

  3. Behr J-P (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  4. Blanchard EJ, Reinhardt RM, Graves EE, Andrews BK (1994) Dyeable cross-linked cellulose from low formaldehyde and non-formaldehyde finishing systems. Ind Eng Chem Res 33:1030–1034

    CAS  Google Scholar 

  5. Chang DR, Harden S, Loverro N (1986) Protonation of polyethylenimine. J Macromol Sci 23:801–804

    Google Scholar 

  6. Choudhury CK, Roy S (2013) Structural and dynamical properties of polyethylenimine in explicit water at different protonation states: a molecular dynamics study. Soft Matter 9:2269–2281

    CAS  Google Scholar 

  7. Coma V, Sebti I, Pardon P, Pichavant FH, Deschamps A (2003) Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr Polym 51:265–271

    CAS  Google Scholar 

  8. Corsi I, Fiorati A, Grassi G, Bartolozzi I, Daddi T, Melone L, Punta C (2018a) Environmentally sustainable and ecosafe polysaccharide-based materials for water nano-treatment: an eco-design study. Materials 11:1228

    PubMed Central  Google Scholar 

  9. Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L, Cinuzzi F, Caneschi F, Pellegrini D, Buttino I (2018b) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotox Environ Safe 154:237–244

    CAS  Google Scholar 

  10. Fiol N, Vásquez MG, Pereira M (2019) TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose 26:903–916

    CAS  Google Scholar 

  11. Fiorati A, Turco G, Travan A, Caneva E, Pastori N, Cametti M, Punta C, Melone L (2017) Mechanical and drug release properties of sponges from cross-linked cellulose nanofibers. ChemPlusChem 82:848–858

    CAS  Google Scholar 

  12. Fiorati A, Pastori N, Punta C, Melone L (2019) Spongelike functional materials from TEMPO-oxidized cellulose nanofibers. In: Trotta F, Mele A (eds) Nanosponges: synthesis and applications. Wiley-VCH, New York, pp 123–141

    Google Scholar 

  13. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    PubMed  CAS  Google Scholar 

  14. Hammouda B (2006) Solvation characteristics of a model water-soluble polymer. J Polym Sci B Polym Phys 44:3195–3199

    CAS  Google Scholar 

  15. Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37:6932–6937

    CAS  Google Scholar 

  16. Hammouda B, Horkay F, Becker ML (2005) Clustering and solvation in poly(acrylic acid) polyelectrolyte solutions. Macromolecules 38:2019–2021

    CAS  Google Scholar 

  17. Horkay F, Basser PJ, Hecht A-M, Geissler E (2005) Structural investigations of a neutralized polyelectrolyte gel and an associating neutral hydrogel. Polymer 46:4242–4247

    CAS  Google Scholar 

  18. Hule RA, Nagarkar RP, Altunbas A, Ramay HR, Branco MC, Schneider JP, Pochan DJ (2008) Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels. Faraday Discuss 139:251–264

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42:7137–7145

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    PubMed  CAS  Google Scholar 

  21. Jiang F, Hsieh YL (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2:350–359

    CAS  Google Scholar 

  22. Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley, Hoboken. ISBN 978-3-527-68998-9

    Google Scholar 

  23. Keiderling U (2002) The new ‘BerSANS-PC’ software for reduction and treatment of small angle neutron scattering data. Appl Phys A 74:s1455–s1457

    CAS  Google Scholar 

  24. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565

    Google Scholar 

  25. Lee KY (2018) Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press, Boca Raton. ISBN 978-1-351-26290-3

    Google Scholar 

  26. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    CAS  Google Scholar 

  27. Melone L, Altomare L, Alfieri I, Lorenzi A, De Nardo L, Punta C (2013) Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: synthesis, characterization, and photocatalytic properties. J Photochem Photobiol A: Chem 261:53–60

    CAS  Google Scholar 

  28. Melone L, Bonafede S, Tushi D, Punta C, Cametti M (2015a) Dip in colorimetric fluoride sensing by a chemically engineered polymeric cellulose/bPEI conjugate in the solid state. RSC Adv 5:83197–83205

    CAS  Google Scholar 

  29. Melone L, Rossi B, Pastori N, Panzeri W, Mele A, Punta C (2015b) TEMPO-oxidized cellulose cross-linked with branched polyethyleneimine: nanostructured adsorbent sponges for water remediation. ChemPlusChem 80:1408–1415

    CAS  Google Scholar 

  30. Millon LE, Nieh M-P, Hutter JL, Wan W (2007) SANS characterization of an anisotropic poly(vinyl alcohol) hydrogel with vascular applications. Macromolecules 40:3655–3662

    CAS  Google Scholar 

  31. Möller H, Grelier S, Pardon P, Coma V (2004) Antimicrobial and physicochemical properties of chitosan–HPMC-based films. J Agric Food Chem 52:6585–6591

    PubMed  Google Scholar 

  32. Panzella L, Melone L, Pezzella A, Rossi B, Pastori N, Perfetti M, D’Errico G, Punta C, D’Ischia M (2016) Surface-functionalization of nanostructured cellulose aerogels by solid state eumelanin coating. Biomacromolecules 17:564–571

    PubMed  CAS  Google Scholar 

  33. Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, Pastori N, Galante YM, Michaud P (2017) TEMPO-mediated oxidation of polysaccharides: an ongoing story. Carbohydr Polym 165:71–85

    PubMed  CAS  Google Scholar 

  34. Rossi B, Paciaroni A, Venuti V, Fadda GC, Melone L, Punta C, Crupi V, Majolino D, Mele A (2017) SANS investigation of water adsorption in tunable cyclodextrin-based polymeric hydrogels. Phys Chem Chem Phys 19:6022–6029

    PubMed  CAS  Google Scholar 

  35. Rosta L (2002) Cold neutron research facility at the Budapest Neutron Centre. Appl Phys A 74:s52–s54

    CAS  Google Scholar 

  36. Saffer EM, Lackey MA, Griffin DM, Kishore S, Tew GN, Bhatia SR (2014) SANS study of highly resilient poly(ethylene glycol) hydrogels. Soft Matter 10:1905–1916

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69:748–755

    CAS  Google Scholar 

  38. Thomas B, Raj MC, AK B, RM H, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    PubMed  CAS  Google Scholar 

  39. Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701

    CAS  Google Scholar 

  40. Yun SI, Lai K-C, Briber RM, Teertstra SJ, Gauthier M, Bauer BJ (2008) Conformation of arborescent polymers in solution by small-angle neutron scattering: segment density and core–shell morphology. Macromolecules 41:175–183

    CAS  Google Scholar 

  41. Zhou T, Cheng X, Pan Y, Li C, Gong L (2019) Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying. Cellulose 26:1747–1755

    CAS  Google Scholar 

  42. Ziebarth JD, Wang Y (2010) Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations. Biomacromolecules 11:29–38

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CERIC-ERIC Consortium for the access to experimental facilities and financial support. The project was funded by Regione Toscana, NanoBonD (Nanomaterials for Remediation of Environmental Matrices associated to Dewatering, Nanomateriali per la Bonifica associata a Dewatering di matrici ambientali) POR CReO FESR Toscana 2014–2020-30/07/2014-LA 1.1.5 CUP 3389.30072014.067000007. This work benefited from the use of the SasView application, originally developed under NSF award DMR-0520547. SasView contains code developed with funding from the European Union’s Horizon 2020 research and innovation program under the SINE2020 project, Grant Agreement No 654000.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Paladini or Andrea Fiorati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paladini, G., Venuti, V., Almásy, L. et al. Cross-linked cellulose nano-sponges: a small angle neutron scattering (SANS) study. Cellulose 26, 9005–9019 (2019). https://doi.org/10.1007/s10570-019-02732-2

Download citation

Keywords

  • Cellulose nano-fibers
  • TEMPO oxidation
  • SANS technique
  • Nano-porous materials
  • Cellulose nano-sponges