pp 1–11 | Cite as

Highly reversible photochromism in composite WO3/nanocellulose films

  • O. L. Evdokimova
  • T. V. Kusova
  • O. S. Ivanova
  • A. B. Shcherbakov
  • Kh. E. Yorov
  • A. E. Baranchikov
  • A. V. AgafonovEmail author
  • V. K. Ivanov
Original Research


Reversible photochromic hybrid organic–inorganic films containing nanocrystalline cellulose as a matrix and tungsten oxide as a photochromic component (CNC/WO3) were obtained via a simple and quick solvent casting method. The films were studied by scanning electron microscopy, together with element mapping, FT-IR spectroscopy and X-ray diffraction, confirming successful incorporation of WO3 nanoparticles into a nanocellulose matrix. Thermal analysis data indicated that the modification of a nanocellulose matrix with WO3 increases its thermal stability. The CNC/WO3 films showed a quick coloration-bleaching transition with good reversibility within 20 min, without notable degradation of photochromic properties after 10 cycles. The synthetic method proposed allows for scalable preparation of highly efficient low-cost WO3-based photochromic materials.

Graphic abstract


Nanocellulose Tungsten oxide Composite Photochromism Film 



The work was supported by the Russian Science Foundation (Grant No. 18-73-10150). The electron microscopy and energy-dispersive X-ray spectroscopy measurements were performed using shared experimental facilities supported by IGIC RAS state assignment.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

10570_2019_2716_MOESM1_ESM.docx (285 kb)
Supplementary material 1 (DOCX 285 kb)


  1. Adachi K, Mita T, Tanaka S, Honda K, Yamazaki S, Nakayama M, Goto T, Watara H (2012) Kinetic characteristics of enhanced photochromism in tungsten oxide nanocolloid adsorbed on cellulose substrates, studied by total internal reflection Raman spectroscopy. RSC Adv 2:2128–2136. Google Scholar
  2. Bartha L, Kiss AB, Szalay T (1995) Chemistry of tungsten oxide bronzes. Int J Refract Met Hard Mater 13:77–91. Google Scholar
  3. Bazarjani MS, Müller MM, Kleebe H-J, Fasel C, Riedel R, Gurlo A (2014) In situ formation of tungsten oxycarbide, tungsten carbide and tungsten nitride nanoparticles in micro- and mesoporous polymer-derived ceramics. J Mater Chem A 2:10454–10464. Google Scholar
  4. Chinde S, Dumala N, Rahman MF, Kamal SSK, Kumari SI, Mahboob M, Grover P (2017) Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure. Environ Sci Pollut Res 24(15):13576–13593. Google Scholar
  5. Dejournett TJ, Spicer JB (2014) The influence of oxygen on the microstructural, optical and photochromic properties of polymer-matrix, tungsten-oxide nano-composite films. Sol Energy Mater Sol Cell 120:102–108. Google Scholar
  6. Ding D, Shen Y, Ouyang Y, Li Z (2012) Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO3 thin films. Thin Solid Films 520:7164–7168. Google Scholar
  7. Dong H, Snyder JF, Tran DT, Leadorea JL (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95(2):760–767. Google Scholar
  8. Evdokimova OL, Svensson FG, Agafonov AV, Håkansson S, Seisenbaeva GA, Kessler VG (2018) Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloid titania-synthesis and antibacterial properties. Nanomaterials 8(4):228. Google Scholar
  9. Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C (2018) History of organic-inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater 28(27):1704158. Google Scholar
  10. Han B, Popov AL, Shekunova TO, Kozlov DA, Ivanova OS, Rumyantsev AA, Shcherbakov AB, Popova NR, Baranchikov AE, Ivanov VK (2019) Highly crystalline WO3 nanoparticles are non-toxic to stem cells and cancer cells. J Nanomater 2019:5384132. Google Scholar
  11. He T, Yao J (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51(6):810–879. Google Scholar
  12. Henrique MA, Neto WPF, Silvério HA, Martins DF, Gurgel LVA, da Silva Barud H, de Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crops Prod 76:128–140. Google Scholar
  13. Hosseini F, Rasuli R, Jafarian V (2018) Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus. J Phys D Appl Phys 51(14):145403. Google Scholar
  14. Hwang DK, Kim HJ, Han HS, Shul YG (2004) Development of photochromic coatings on polycarbonate. J Sol Gel Sci Technol 32(1–3):137–141. Google Scholar
  15. Jakhmola A, Anton N, Anton H, Messaddeq N, Hallouard F, Klymchenko A, Mely Y, Vandamme TF (2014) Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials 35(9):2981–2986. Google Scholar
  16. Jing X, Zou D, Meng Q, Zhang W, Zhang F, Feng W, Han X (2014) Fabrication and visible-light photochromism of novel hybrid inorganic–organic film based on polyoxometalates and ethyl cellulose. Inorg Chem Commun 46:149–154. Google Scholar
  17. Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sens Actuators B 225:535–543. Google Scholar
  18. Kaushika M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637. Google Scholar
  19. Kim SJ, Choi SJ, Jang JS, Kim NH, Hakim M, Tuller HL, Kim I-D (2016) Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10:5891–5899. Google Scholar
  20. Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C, Fischer D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo Y-L, Someya T (2012) Organic transistors with high thermal stability for medical applications. Nat Commun 3:723. Google Scholar
  21. Ling Z, Chen S, Zhang X, Takabe K, Xu F (2017) Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci Rep 7:10230. Google Scholar
  22. Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K (2013) Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci 101:523–532. Google Scholar
  23. Poletto M, Ornaghi Júnior HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119. Google Scholar
  24. Popov AL, Zholobak NM, Balko OI, Balko OB, Shcherbakov AB, Popova NR, Ivanova OS, Baranchikov AE, Ivanov VK (2018) Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J Photochem Photobiol B 178:395–403. Google Scholar
  25. Reddy JP, Rhim J-W (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488. Google Scholar
  26. Shekunova TO, Baranchikov AE, Yapryntsev AD, Rudakovskaya PG, Ivanova OS, Karavanova YuA, Kalinina MA, Rumyantseva MN, Dorofeev SG, Ivanov VK (2018) Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3. J Mater Sci 53(3):1758–1768. Google Scholar
  27. Shen PK, Huang HT, Tseung ACC (1992) A study of tungsten trioxide and polyaniline composite films: I. Electrochemical and electrochromic behavior. J Electrochem Soc 139:1840–1845. Google Scholar
  28. Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201. Google Scholar
  29. Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133(1):321–326. Google Scholar
  30. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765. Google Scholar
  31. Stoenescu S, Badilescu S, Sharma T, Brüning R, Truong V-V (2016) Tungsten oxide–cellulose nanocrystal composite films for electrochromic applications. Opt Eng 55(12):127102. Google Scholar
  32. Tahir MB, Nabi G, Rafique M, Khalid NR (2017) Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. Int J Environ Sci Technol 14:2519–2542. Google Scholar
  33. Teixeira EM, Oliveira CR, Mattoso LHC, Corrêa AC, Paladin PD (2010) Nanofibras de algodão obtidas sob diferentes condições de hidrólise ácida. Polámeros 20:264–268. Google Scholar
  34. Thummavichai K, Xia Y, Zhu Y (2017) Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Progr Mater Sci 88:281–324. Google Scholar
  35. Wang S, Fan W, Liu Z, Yu A, Jiang X (2018) Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J Mater Chem C 6:191–212. Google Scholar
  36. Xiao T, Hanif A, York APE, Sloan J, Green MLH (2002) Study on preparation of high surface area tungsten carbides and phase transition during the carburization. Phys Chem Chem Phys 4:3522–3529. Google Scholar
  37. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98(1):307–326. Google Scholar
  38. Yamazaki S, Yamate T, Adachi K (2013) Photocatalytic activity of aqueous WO3 sol for the degradation of orange II and 4-chlorophenol. Appl Catal A 454:30–36. Google Scholar
  39. Yamazaki S, Ishida H, Shimizu D, Adachi K (2015) Photochromic properties of tungsten oxide/methylcellulose composite film containing dispersing agents. ACS Appl Mater Interfaces 7(47):26326–26332. Google Scholar
  40. Yassin AM, Elnouby M, El-Deeb NM, Hafez EE (2016) Tungsten oxide nanoplates; the novelty in targeting metalloproteinase-7 gene in both cervix and colon cancer cells. Appl Biochem Biotechnol 180(4):623–637. Google Scholar
  41. Zhang B, Liu R, Pan Y, Wang Q, Liu B (2018) Cellulose-based WO3 nanocomposites prepared by a sol–gel method at low temperature. IOP Conf Ser Mater Sci Eng 301:012075. Google Scholar
  42. Zhao Y, Yan X, Yang KR, Cao S, Dong Q, Thorne JE, Materna KL, Zhu S, Pan X, Flytzani-Stephanopoulos M, Brudvig GW, Batista VS, Wang D (2018) End-on bound iridium dinuclear heterogeneous catalysts on WO3 for solar water oxidation. ACS Cent Sci 4(9):1166–1172. Google Scholar
  43. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  3. 3.Zabolotny Institute of Microbiology and Virology of the National Academy of SciencesKievUkraine
  4. 4.Lomonosov Moscow State UniversityMoscowRussia
  5. 5.National Research Tomsk State UniversityTomskRussia

Personalised recommendations