Advertisement

Cellulose

, Volume 26, Issue 13–14, pp 7635–7651 | Cite as

Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media

  • Ahmed Fouzi TarchounEmail author
  • Djalal TracheEmail author
  • Thomas M. Klapötke
  • Mehdi Derradji
  • Wissam Bessa
Original Research
  • 55 Downloads

Abstract

This work reports the isolation of cellulose from giant reed through an ecofriendly multistep procedure including alkali treatment and totally chlorine free delignification, followed by acid hydrolysis to prepare microcrystalline cellulose using different acidic solutions (HCl, HNO3, H2SO4, HCl/HNO3 (2:1, v/v), and HCl/H2SO4 (2:1, v/v)). Several characterizations were performed in order to investigate the properties of each sample. FTIR results affirmed that the successive alkali treatment, totally chlorine free bleaching, and acid hydrolysis remove efficiently hemicellulose, lignin, and amorphous regions from the giant reed, and showed that the characteristic peaks of the prepared giant reed microcrystalline celluloses (GRMCC-HCl, GRMCC-HNO3, GRMCC-H2SO4, GRMCC-HCl/HNO3, and GRMCC-HCl/H2SO4) were similar to those of the commercial one. XRD measurements exhibited that microcrystalline cellulose produced from giant reed belong to cellulose I allomorph, with crystallinity index ranging from 73 to 80%. SEM micrographs revealed non-uniform micro sized rod-like shape morphology of GRMCC samples. The thermal analysis results displayed that the thermal decomposition of the obtained GRMCCs shifted to higher temperatures compared to the respective giant reed cellulose. This work opened a new pathway to prepare cellulose and microcrystalline cellulose from an abundant natural source using an ecofriendly process, and it could be expected to have applications in several areas.

Graphic abstract

Keywords

Giant reed Total chlorine free delignification Microcrystalline cellulose Acid hydrolysis Characterization Thermal properties 

Notes

Acknowledgments

The authors gratefully acknowledge Prof. Kamel Khimeche, Dr. Abderrahmane Mezroua, Dr. Samir Belkhiri, Dr. Salim Chelouche and Dr. Moulai Karim Boulkadid from the Ecole Militaire Polytechnique for the necessary facilities and encouragement for the accomplishment of this research.

References

  1. Adel AM, El–Wahab ZHA, Ibrahim AA, Al–Shemy MT (2010) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 101:4446–4455.  https://doi.org/10.1016/j.biortech.2010.01.047 CrossRefPubMedGoogle Scholar
  2. Agblevor FA, Ibrahim MM, El-Zawawy WK (2007) Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14:247–256.  https://doi.org/10.1007/s10570-006-9103-y CrossRefGoogle Scholar
  3. Al-Dulaimi AA, Wanrosli W (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25:192–202.  https://doi.org/10.1007/s10924-016-0798-z CrossRefGoogle Scholar
  4. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671.  https://doi.org/10.1016/j.biortech.2007.04.029 CrossRefPubMedGoogle Scholar
  5. Ashori A, Harun J, Raverty WD, Yusoff MNM (2006) Chemical and morphological characteristics of Malaysian cultivated kenaf (Hibiscus cannabinus) fiber. Polym Plast Technol Eng 45:131–134.  https://doi.org/10.1016/j.biortech.2007.04.029 CrossRefGoogle Scholar
  6. Barana D, Salanti A, Orlandi M, Ali DS, Zoia L (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crop Prod 86:31–39.  https://doi.org/10.1016/j.indcrop.2016.03.029 CrossRefGoogle Scholar
  7. Cheng M, Qin Z, Chen Y, Liu J, Ren Z (2017) Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24:3243–3254.  https://doi.org/10.1007/s10570-017-1339-1 CrossRefGoogle Scholar
  8. Cheng F, Zhao X, Hu Y (2018) Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents. Bioresour Technol 249:969–975.  https://doi.org/10.1016/j.biortech.2017.10.089 CrossRefPubMedGoogle Scholar
  9. Chuayjuljit S, Su-Uthai S, Tunwattanaseree C, Charuchinda S (2009) Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets. J Reinf Plast Compos 28:1245–1254.  https://doi.org/10.1177/0731684408089129 CrossRefGoogle Scholar
  10. Chuayplod P, Aht-Ong D (2019) A study of microcrystalline cellulose prepared from parawood (Hevea brasiliensis) sawdust waste using different acid types. J Met Mater Min.  https://doi.org/10.14456/jmmm.2018.33 CrossRefGoogle Scholar
  11. Das K, Ray D, Bandyopadhyay N, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363.  https://doi.org/10.1007/s10924-010-0167-2 CrossRefGoogle Scholar
  12. de Souza AG, Rocha DB, Kano FS, dos Santos RD (2019) Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods. Resour Conserv Recyl 143:133–142.  https://doi.org/10.1016/j.resconrec.2018.12.031 CrossRefGoogle Scholar
  13. El Achaby M, Fayoud N, Figueroa-Espinoza M-C, Aboulkas A (2018) New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agro-waste material: application to removal of dyes from waste water. Rsc Adv 8:5212–5224.  https://doi.org/10.1039/C7RA10239A CrossRefGoogle Scholar
  14. El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10.  https://doi.org/10.1016/j.carbpol.2006.04.009 CrossRefGoogle Scholar
  15. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83.  https://doi.org/10.1016/j.carbpol.2014.02.016 CrossRefPubMedGoogle Scholar
  16. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  17. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588.  https://doi.org/10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  18. Gangwar AK, Prakash NT, Prakash R (2016) An eco-friendly approach: incorporating a xylanase stage at various places in ECF and chlorine-based bleaching of eucalyptus pulp. BioResources 11:5381–5388.  https://doi.org/10.15376/biores.11.2.5381-5388 CrossRefGoogle Scholar
  19. Ge X, Xu F, Vasco-Correa J, Li Y (2016) Giant reed: a competitive energy crop in comparison with miscanthus. Renew Sustain Energy Rev 54:350–362.  https://doi.org/10.1016/j.rser.2015.10.010 CrossRefGoogle Scholar
  20. Giudicianni P, Cardone G, Sorrentino G, Ragucci R (2014) Hemicellulose, cellulose and lignin interactions on Arundo donax steam assisted pyrolysis. J Anal Appl Pyrol 110:138–146.  https://doi.org/10.1016/j.jaap.2014.08.014 CrossRefGoogle Scholar
  21. Gong J, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. Rsc Adv 7:33486–33493.  https://doi.org/10.1039/C7RA06222B CrossRefGoogle Scholar
  22. Haafiz MM, Eichhorn S, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634.  https://doi.org/10.1016/j.carbpol.2013.01.035 CrossRefGoogle Scholar
  23. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500.  https://doi.org/10.1021/cr900339w CrossRefPubMedGoogle Scholar
  24. Hermawan D, Lai TK, Jafarzadeh S, Gopakumar DA, Hasan M, Owolabi FT, Khalil HA (2019) Development of seaweed-based bamboo microcrystalline cellulose films intended for sustainable food packaging applications. BioResources 14:3389–3410.  https://doi.org/10.15376/biores.14.2.3389-3410 CrossRefGoogle Scholar
  25. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6:534.  https://doi.org/10.1038/nnano.2011.145 CrossRefPubMedGoogle Scholar
  26. Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Haafiz MM (2016) Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 92:11–19.  https://doi.org/10.1016/j.ijbiomac.2016.06.094 CrossRefPubMedGoogle Scholar
  27. Hussin MH, Trache D, Chuin CTH, Fazita MN, Haafiz MM, Hossain MS (2019) Extraction of cellulose nanofibers and their eco-friendly polymer composites. In: Inamuddin, Thomas S, Kumar Mishra R, Asiri AM (eds) Sustainable polymer composites and nanocomposites. Springer International Publishing, Cham, pp 653–691CrossRefGoogle Scholar
  28. Ilyas R, Sapuan S, Ishak M (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051.  https://doi.org/10.1016/j.carbpol.2017.11.045 CrossRefPubMedGoogle Scholar
  29. Ilyas R, Sapuan S, Ishak M, Zainudin E (2019) Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Intl J Biol Macromol 123:379–388.  https://doi.org/10.1016/j.ijbiomac.2018.11.124Get CrossRefGoogle Scholar
  30. Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68.  https://doi.org/10.1016/j.carbpol.2014.12.064 CrossRefPubMedGoogle Scholar
  31. Jiao Y, Wan C, Qiang T, Li J (2016) Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents. Appl Phys A 122:686.  https://doi.org/10.1007/s00339-016-0194-5 CrossRefGoogle Scholar
  32. Kale RD, Bansal PS, Gorade VG (2018) Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. J Polym Environ 26:355–364.  https://doi.org/10.1007/s10924-017-0936-2 CrossRefGoogle Scholar
  33. Khalil HA, Lai TK, Tye YY, Paridah M, Fazita MN, Azniwati A, Rizal S (2018) Preparation and characterization of microcrystalline cellulose from sacred Bali bamboo as reinforcing filler in seaweed-based composite film. Fiber Polym 19:423–434.  https://doi.org/10.1007/s12221-018-7672-7 CrossRefGoogle Scholar
  34. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940.  https://doi.org/10.1016/j.ijbiomac.2017.05.135 CrossRefPubMedGoogle Scholar
  35. Kuznetsov B, Sudakova I, Garyntseva N, Djakovitch L, Pinel C (2017) Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. React Kinet Mech Catal 120:81–94.  https://doi.org/10.1007/s11144-016-1100-z CrossRefGoogle Scholar
  36. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99.  https://doi.org/10.1016/j.carbpol.2008.09.034 CrossRefGoogle Scholar
  37. Li J, Qiang D, Zhang M, Xiu H, Zhang X (2015) Joint action of ultrasonic and Fe3 + to improve selectivity of acid hydrolysis for microcrystalline cellulose. Carbohydr Polym 129:44–49.  https://doi.org/10.1016/j.carbpol.2015.04.034 CrossRefPubMedGoogle Scholar
  38. Mahmud MM, Perveen A, Jahan RA, Matin MA, Wong SY, Li X, Arafat MT (2019) Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int J Biol Macromol 1:2–8.  https://doi.org/10.1016/j.ijbiomac.2019.03.027 CrossRefGoogle Scholar
  39. Merci A, Urbano A, Grossmann MVE, Tischer CA, Mali S (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res Int 73:38–43.  https://doi.org/10.1016/j.foodres.2015.03.020 CrossRefGoogle Scholar
  40. Mugaanire IT, Wang H, Sun J (2019) Fibrous microcrystalline cellulose from Ficus natalensis barkcloth. Eur J Wood Wood Prod 77:483–486.  https://doi.org/10.1007/s00107-019-01382-2 CrossRefGoogle Scholar
  41. Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JP, Rosa M (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydr Polym 110:456–463.  https://doi.org/10.1016/j.carbpol.2014.04.053 CrossRefPubMedGoogle Scholar
  42. Nelson PJ (1998) Elemental chlorine free (ECF) and totally chlorine free (TCF) bleaching of pulps. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 215–256Google Scholar
  43. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crop Prod 42:480–488.  https://doi.org/10.1016/j.indcrop.2012.06.041 CrossRefGoogle Scholar
  44. Nuruddin M, Chowdhury A, Haque S, Rahman M, Farhad S, Jahan MS, Quaiyyum A (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Biomaterials 3:5–6.  https://doi.org/10.1007/s10570-010-9481-z CrossRefGoogle Scholar
  45. Owolabi AF, Haafiz MM, Hossain MS, Hussin MH, Fazita MN (2017) Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. Int J Biol Macromol 95:1228–1234.  https://doi.org/10.1016/j.ijbiomac.2016.11.016 CrossRefPubMedGoogle Scholar
  46. Pachuau L, Dutta RS, Hauzel L, Devi TB, Deka D (2019) Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Carbohydr Polym 206:336–343.  https://doi.org/10.1016/j.carbpol.2018.11.013 CrossRefPubMedGoogle Scholar
  47. Prosvirnikov D, Safin R, Zakirov S (2018) Microcrystalline cellulose based on cellulose containing raw material modified by steam explosion treatment. Solid State Phenom 284:773–778CrossRefGoogle Scholar
  48. Razali N, Hossain, Taiwo OA, Ibrahim M, Nadzri NWM, Razak N, Kassim MHM (2017) Influence of acid hydrolysis reaction time on the isolation of cellulose nanowhiskers from oil palm empty fruit bunch microcrystalline cellulose. BioResources 12:6773–6788.  https://doi.org/10.15376/biores.12.3.6773-6788 CrossRefGoogle Scholar
  49. Reddy KO, Maheswari CU, Dhlamini M, Kommula V (2016) Exploration on the characteristics of cellulose microfibers from Palmyra palm fruits. Int J Polym Anal Charact 21:286–295.  https://doi.org/10.1080/1023666X.2016.1147799 CrossRefGoogle Scholar
  50. Robles E, Fernandez-Rodriguez J, Barbosa AM, Gordobil O, Carreno NL, Labidi J (2018) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr Polym 183:294–302.  https://doi.org/10.1016/j.carbpol.2018.01.015 CrossRefPubMedGoogle Scholar
  51. Saikia R, Chutia RS, Kataki R, Pant KK (2015) Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol 188:265–272.  https://doi.org/10.1016/j.biortech.2015.01.089 CrossRefPubMedGoogle Scholar
  52. Samiee S, Ahmadzadeh H, Hosseini M, Lyon S (2019) Algae as a source of microcrystalline cellulose. In: Hosseini M (ed) Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, Amsterdam, pp 331–350CrossRefGoogle Scholar
  53. Sun CC (2008) Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm 346:93–101.  https://doi.org/10.1016/j.ijpharm.2007.06.017 CrossRefPubMedGoogle Scholar
  54. Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339.  https://doi.org/10.1016/j.polymdegradstab.2004.02.008 CrossRefGoogle Scholar
  55. Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845.  https://doi.org/10.1016/j.ijbiomac.2019.07.176 CrossRefPubMedGoogle Scholar
  56. Thakur VK, Thakur MK, Kessler MR (2017) Handbook of composites from renewable materials, biodegradable materials. Wiley, HobokenGoogle Scholar
  57. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm 473:64–72.  https://doi.org/10.1016/j.ijpharm.2014.06.055 CrossRefPubMedGoogle Scholar
  58. Trache D (2016) Microcrystalline cellulose and related polymer composites: synthesis, characterization and properties. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials, structure and chemistry. Wiley, Hoboken, pp 61–92Google Scholar
  59. Trache D (2018) Nanocellulose as a promising sustainable material for biomedical applications. AIMS Mater Sci 5:201–205.  https://doi.org/10.3934/matersci.2018.2.201 CrossRefGoogle Scholar
  60. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr Polym 104:223–230.  https://doi.org/10.1016/j.carbpol.2014.01.058 CrossRefPubMedGoogle Scholar
  61. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Haafiz MM (2016a) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804.  https://doi.org/10.1016/j.ijbiomac.2016.09.056 CrossRefPubMedGoogle Scholar
  62. Trache D, Khimeche K, Mezroua A, Benziane M (2016b) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124:1485–1496.  https://doi.org/10.1007/s10973-016-5293-1 CrossRefGoogle Scholar
  63. Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786.  https://doi.org/10.1039/C6NR09494E CrossRefPubMedGoogle Scholar
  64. Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MK, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528.  https://doi.org/10.1007/s10570-018-2175-7 CrossRefGoogle Scholar
  65. Vanhatalo K (2017) A new manufacturing process for microcrystalline cellulose (MCC). Department of Bioproducts and Biosystems. PhD thesis, Aalto University, FinlandGoogle Scholar
  66. Vora R, Shah Y (2017) Extraction, characterization of microcrystalline cellulose from corn husk using different acid alkali treatment method. Indo Am J Pharm Sci 4:2399–2408.  https://doi.org/10.5281/zenodo.846367 CrossRefGoogle Scholar
  67. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493.  https://doi.org/10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  68. Wise LE (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade 122:35–43Google Scholar
  69. Xiang LY, Mohammed MAP, Baharuddin AS (2016) Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr Polym 148:11–20.  https://doi.org/10.1016/j.carbpol.2016.04.055 CrossRefPubMedGoogle Scholar
  70. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.  https://doi.org/10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  71. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944.  https://doi.org/10.1039/C3TA01150J CrossRefGoogle Scholar
  72. Yue X, He J, Xu Y, Yang M, Xu Y (2019) A novel method for preparing microcrystalline cellulose from bleached chemical pulp using transition metal ions enhanced high temperature liquid water process. Carbohydr Polym 208:115–123.  https://doi.org/10.1016/j.carbpol.2018.12.072 CrossRefPubMedGoogle Scholar
  73. Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y (2018) Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym 184:164–170.  https://doi.org/10.1016/j.carbpol.2017.12.024 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UER Procédés EnergétiquesEcole Militaire PolytechniqueBordj El-BahriAlgeria
  2. 2.Department of ChemistryLudwig Maximilian UniversityMunichGermany

Personalised recommendations