Skip to main content
Log in

Revealing the role of graphene in enhancing the catalytic performance of phthalocyanine immobilized graphene/bacterial cellulose nanocomposite

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The catalytic activity of metal phthalocyanine (MPc) heterogeneous catalyst is determined by both the microstructure of the support and the electron transfer efficiency of MPc during the reaction process. Inspired by this, we developed a novel, highly-efficient heterogeneous MPc catalyst based on the construction of a “reaction-involved” support. Graphene incorporated bacterial cellulose (G/BC) nanohybrid was conveniently prepared by an in situ biosynthetic method for the subsequent immobilization of tetraamino cobalt(II) phthalocyanine (CoPc) catalyst. The resulting graphene incorporated, CoPc decorated bacterial cellulose nanocomposite (CoPc@G/BC) was applied for decoloration of dye solutions, the G/BC support was deeply involved in the reaction process. The unique three-dimensional web-like framework structure of G/BC and the high affinity of graphene markedly promote the accessibility of reactants to the active sites of CoPc@G/BC, and the equilibrium adsorption data were best fitted by Freundlich model. With H2O2 as an oxidant, dye molecules were catalytically oxidized by CoPc@G/BC, a ca. 70% enhancement of decoloration capacity was achieved with the incorporation of graphene. The catalytic oxidation was analyzed by electron paramagnetic resonance, highly reactive hydroxyl radical (·OH) was identified during the reaction, and the incorporated graphene can obviously promote the formation of ·OH. A potential mechanism of enhancement of catalytic activity of CoPc with G/BC support was originally proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

G/BC:

Graphene incorporated bacterial cellulose

CoPc:

Tetraamino cobalt(II) phthalocyanine

CoPc@G/BC:

Graphene incorporated, CoPc decorated bacterial cellulose

References

  • Achar B, Fohlen G, Parker J, Keshavayya J (1987) Synthesis and structural studies of metal(II) 4,9,16,23-phthalocyanine tetraamines. Polyhedron 6(6):1463–1467

    Article  CAS  Google Scholar 

  • Balkus KJ, Eissa M, Levado R (1995) Oxidation of alkanes catalyzed by zeolite-encapsulated perfluorinated ruthenium phthalocyanines. J Am Chem Soc 117(43):10753–10754

    Article  CAS  Google Scholar 

  • Bottari G, de la Torre G, Guldi DM, Torres T (2010) Covalent and noncovalent phthalocyanine–carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev 110(11):6768–6816

    Article  CAS  PubMed  Google Scholar 

  • Bottari G, Suanzes JA, Trukhina O, Torres T (2011) Phthalocyanine–carbon nanostructure materials assembled through supramolecular interactions. J Phys Chem Lett 2(8):905–913

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Huang Y (2015) Bacterial cellulose nanofibers decorated with phthalocyanine: preparation, characterization and dye removal performance. Mater Lett 142:235–237

    Article  CAS  Google Scholar 

  • Chen S, Teng Q (2017) Quantitative immobilization of phthalocyanine onto bacterial cellulose for construction of a high-performance catalytic membrane reactor. Materials 10(7):846–859

    Article  CAS  PubMed Central  Google Scholar 

  • Chen WX, Lu WY, Yao YY, Xu MH (2007) Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine. Environ Sci Technol 41(17):6240–6245

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Huang X, Xu Z (2011) Functionalization of cellulose nanofiber mats with phthalocyanine for decoloration of reactive dye wastewater. Cellulose 18(5):1295–1303

    Article  CAS  Google Scholar 

  • Chen S, Huang X, Xu Z (2012) Effect of a spacer on phthalocyanine functionalized cellulose nanofiber mats for decolorizing reactive dye wastewater. Cellulose 19(4):1351–1359

    Article  CAS  Google Scholar 

  • Chen S, Huang X, Xu Z (2014) Decoration of phthalocyanine on multiwalled carbon nanotubes/cellulose nanofibers nanocomposite for decoloration of dye wastewater. Compos Sci Technol 101:11–16

    Article  CAS  Google Scholar 

  • Chen C, Xi JB, Han Y, Peng L, Gao WW, Xu Z, Gao C (2018) Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon 139:545–555

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):403–411

    Article  CAS  Google Scholar 

  • da Silva TH, de Souza TFM, Ribeiro AO, Calefi PS, Ciuffi KJ, Nassar EJ, Molina EF, Hamer P, de Faria EH (2016) New strategies for synthesis and immobilization of methalophtalocyanines onto kaolinite: preparation, characterization and chemical stability evaluation. Dyes Pigm 134:41–50

    Article  CAS  Google Scholar 

  • Ersan G, Apul OG, Perreault F, Karanfil T (2017) Adsorption of organic contaminants by graphene nanosheets: a review. Water Res 126:385–398

    Article  CAS  PubMed  Google Scholar 

  • Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, second, completely revised and enlarged edn. Wiley, Hoboken

    Book  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107

    Google Scholar 

  • Geim AK (2009) Graphene: Status and Prospects. Science 324(5934):1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Chen S, Huang Y (2018a) In-situ biosynthesis of graphene-incorporated-bacterial-cellulose conductive nanohybrid for phthalocyanine immobilization. Chem Lett 47(11):1368–1370

    Article  CAS  Google Scholar 

  • Guo XH, Zhou XJ, Li XH, Shao CL, Han CH, Li XW, Liu YC (2018b) Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. J Colloid Interface Sci 525:187–195

    Article  CAS  PubMed  Google Scholar 

  • Han ZB, Han X, Zhao XM, Yu JT, Xu H (2016) Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes. J Hazard Mater 320:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513

    Article  CAS  PubMed  Google Scholar 

  • Iliev V, Alexiev V, Bilyarska L (1999) Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds. J Mol Catal A Chem 137(1–3):15–22

    Article  CAS  Google Scholar 

  • Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  • Klaewkla R, Arend M, Hoelderich WF (2011) A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems. In: Nakajima H (ed) Mass transfer-advanced aspects. IntechOpen. ISBN: 978-953-307-636-2

  • Kluson P, Drobek M, Krejcikova S, Krysa J, Kalaji A, Cajthaml T, Rakusan J (2008) Molecular structure effects in photodegradation of phenol and its chlorinated derivatives with phthalocyanines. Appl Catal B Environ 80(3–4):321–326

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  • Liu YS, McCrory CCL (2019) Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat Commun 10:1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WY, Li N, Chen WX, Yao YY (2009) The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 47(14):3337–3345

    Article  CAS  Google Scholar 

  • Malig J, Jux N, Guldi DM (2013) Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc Chem Res 46(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Nam W (2007) Dioxygen activation by metalloenzymes and models. ACS Publications, Washington

    Book  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Springer, Berlin

    Book  Google Scholar 

  • Ragoussi ME, Katsukis G, Roth A, Malig J, de la Torre G, Guldi DM, Torres T (2014) Electron-donating behavior of few-layer graphene in covalent ensembles with electron-accepting phthalocyanines. J Am Chem Soc 136(12):4593–4598

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Ragoussi ME, Wibmer L, Katsukis G, de la Torre G, Torres T, Guldi DM (2014) Electron-accepting phthalocyanine pyrene conjugates: towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene. Chem Sci 5(9):3432–3438

    Article  CAS  Google Scholar 

  • Soliman AB, Hassan MH, Huan TN, Abugable AA, Elmehalmey WA, Karakalos SG, Tsotsalas M, Heinle M, Elbahri M, Fontecave M, Alkordi MH (2017) Pt immobilization within a tailored porous-organic polymer graphene composite: opportunities in the hydrogen evolving reaction. ACS Catal 7(11):7847–7854

    Article  CAS  Google Scholar 

  • Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113(10):8152–8191

    Article  CAS  PubMed  Google Scholar 

  • Sorokin AB, Kudrik EV (2011) Phthalocyanine metal complexes: versatile catalysts for selective oxidation and bleaching. Catal Today 159(1):37–46

    Article  CAS  Google Scholar 

  • Umeyama T, Imahori H (2013) Photofunctional hybrid nanocarbon materials. J Phys Chem C 117(7):3195–3209

    Article  CAS  Google Scholar 

  • Wibmer L, Lourenco LMO, Roth A, Katsukis G, Neves MGPMS, Cavaleiro JAS, Tome JPC, Torres T, Guldi DM (2015) Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines. Nanoscale 7(13):5674–5682

    Article  CAS  PubMed  Google Scholar 

  • Woodward RT, Markoulidis F, De Luca F, Anthony DB, Malko D, McDonald TO, Shaffer MSP, Bismarck A (2018) Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. J Mater Chem A 6(4):1840–1849

    Article  CAS  Google Scholar 

  • Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47(12):1042–1105

    Article  CAS  Google Scholar 

  • Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39(6):1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young AF, Dean CR (2019) Tuning superconductivity in twisted bilayer graphene. Science 363(6431):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Yuan XM, Zhu B, Cai X, Qiao K, Zhao SY, Yu JW (2018) Influence of different surface treatments on the interfacial adhesion of graphene oxide/carbon fiber/epoxy composites. Appl Surf Sci 458:996–1005

    Article  CAS  Google Scholar 

  • Zhu ZX, Chen Y, Gu Y, Wu F, Lu WY, Xu TF, Chen WX (2016) Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron(II) phthalocyanine nanofibers: intermediates and pathway. Water Res 93:296–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51803044) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ15E030005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xie, W., Guo, B. et al. Revealing the role of graphene in enhancing the catalytic performance of phthalocyanine immobilized graphene/bacterial cellulose nanocomposite. Cellulose 26, 7863–7875 (2019). https://doi.org/10.1007/s10570-019-02670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02670-z

Keywords

Navigation