Skip to main content

Advertisement

Log in

Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Simple and facile fabrication techniques to load conductive components onto textiles for wearable applications are highly demanded. In this work, highly conductive cotton fabrics were fabricated by dip-coating of single-walled carbon nanotubes (CNTs) after polydopamine (PDA) templating. The coated fabrics were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and energy dispersive X-ray spectrum. The introduction of PDA enhanced the adhesion between fiber surface and the loaded CNTs, resulting in a conductivity of 41.5 Ω/sq for the coated fabrics. The CNT-PDA-cotton fabric showed great durability against repeated mechanical deformation (bending, folding) or multiple washing cycles. The excellent strain sensing performance of the coated fabrics granted them the application potential in real-time monitoring of different human motions such as speaking, drinking, walking, bending of finger and knee etc. Furthermore, the composite fabrics showed outstanding electric heating performance with a rise in the surface temperature to about 120 °C within 20 s at 6 V. The fabrication of CNT-PDA-cotton composite fabrics provides a novel and simple way of developing textile-based wearable electronics and heaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amjadi M et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163

    Article  CAS  PubMed  Google Scholar 

  • Amjadi M et al (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater 26(11):1678–1698

    Article  CAS  Google Scholar 

  • Cai G et al (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403

    Article  CAS  Google Scholar 

  • Cai G et al (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Guo Z (2018) A facile method to mussel-inspired superhydrophobic thiol-textiles@ polydopamine for oil/water separation. Colloids Surf A 554:253–260

    Article  CAS  Google Scholar 

  • Chen K et al (2017) Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Adv 7(47):29368–29377

    Article  CAS  Google Scholar 

  • Cheng Y et al (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27(45):7365–7371

    Article  CAS  PubMed  Google Scholar 

  • Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538

    Article  CAS  PubMed  Google Scholar 

  • Du D et al (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4(15):3224–3230

    Article  CAS  Google Scholar 

  • Hu Y et al (2018) A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res 11(4):1938–1955

    Article  Google Scholar 

  • Jia X et al (2014) Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl Mater Interfaces 6(22):19552–19558

    Article  CAS  PubMed  Google Scholar 

  • Kang TJ et al (2010) Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 20(1):015004

    Article  CAS  Google Scholar 

  • Karim N et al (2017) Scalable production of graphene-based wearable e-textiles. ACS Nano 11(12):12266–12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2017a) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24(2):1121–1128

    Article  CAS  Google Scholar 

  • Li Q et al (2017b) Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. J Mater Chem C 5(44):11448–11453

    Article  CAS  Google Scholar 

  • Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799–5811

    Article  CAS  Google Scholar 

  • Li T et al (2019) Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc Chem Res 52(2):288–296

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460

    Article  CAS  Google Scholar 

  • Liu Y et al (2015) One-step modification of fabrics with bioinspired polydopamine@ octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11(4):426–431

    Article  CAS  PubMed  Google Scholar 

  • MohanáKumar G (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702

    Article  CAS  Google Scholar 

  • Molina J (2016) Graphene-based fabrics and their applications: a review. RSC Adv 6(72):68261–68291

    Article  CAS  Google Scholar 

  • Qiao Y et al (2018) Multilayer graphene epidermal electronic skin. ACS Nano 12(9):8839–8846

    Article  CAS  PubMed  Google Scholar 

  • Ryu S et al (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6):5929–5936

    Article  CAS  PubMed  Google Scholar 

  • Samad YA et al (2017) From sewing thread to sensor: Nylon® fiber strain and pressure sensors. Sens Actuators B Chem 240:1083–1090

    Article  CAS  Google Scholar 

  • Seyedin S et al (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horizons 6(2):219–249

    Article  CAS  Google Scholar 

  • Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2016a) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28(31):6640–6648

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2016b) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8(37):24837–24843

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2018) Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J Mater Chem C 6(30):8160–8170

    Article  CAS  Google Scholar 

  • Yan C et al (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027

    Article  CAS  PubMed  Google Scholar 

  • Yan D et al (2016) Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A 4(9):3487–3493

    Article  CAS  Google Scholar 

  • Yang M et al (2018a) Conductive cotton fabrics for motion sensing and heating applications. Polymers 10(6):568

    Article  CAS  PubMed Central  Google Scholar 

  • Yang Z et al (2018b) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9):9134–9141

    Article  CAS  PubMed  Google Scholar 

  • Yin B et al (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9(37):32054–32064

    Article  CAS  PubMed  Google Scholar 

  • Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336

    Article  CAS  PubMed  Google Scholar 

  • Zeng L et al (2018) Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J Power Sources 376:33–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Cai or Xin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadi, M.S., Pan, J., Xu, A. et al. Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose 26, 7569–7579 (2019). https://doi.org/10.1007/s10570-019-02628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02628-1

Keywords

Navigation