Skip to main content

Advertisement

Log in

Influence of torrefaction pretreatment on the pyrolysis characteristics of seaweed biomass

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Torrefaction is a promising pretreatment technology for biomass and its pyrolysis products upgrading. The aim of this study was to investigate the effect of torrefaction on the pyrolysis of seaweed biomass. TG, Py-GC/MS and fixed-bed experiments were used at a series of typical torrefaction temperatures (225 °C, 250 °C, 275 °C and 300 °C) and pyrolysis temperatures (450 °C, 500 °C, and 550 °C). The results showed that increasing of torrefaction temperature led to gradual reduction in moisture content and volatile content due to the precipitation of water and volatile functional groups (OH, NH, CO, C=O, etc.), which resulted in increase of solid products of torrefied seaweed. In addition, the liquid yield showed a promotion at first and then decreased. It also indicated that thermal stability of seaweed became stronger after the pretreatment leading to the initial pyrolysis temperature shifting toward the high temperature section. Meanwhile, the maximum pyrolysis weight loss rate and the total weight loss got a reduction. Moreover, the optimal conditions for maximum bio-oil production were obtained when the temperature of torrefaction was 250 °C at the pyrolysis temperature of 500 °C. Furthermore, the bio-oil under such conditions gave the highest relative content of aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bach QV, Chen WH, Lin SC, Sheen HK, Chang JS (2017) Effect of wet torrefaction on thermal decomposition behavior of microalga Chlorella vulgaris ESP-31. Energy Procedia 105:206–211

    Article  CAS  Google Scholar 

  • Boateng AA, Mullen CA (2013) Fast pyrolysis of biomass thermally pretreated by torrefaction. J Anal Appl Pyrol 100:95–102

    Article  CAS  Google Scholar 

  • Branca C, Di Blasi C, Galgano A, Broström M (2014) Effects of the torrefaction conditions on the fixed-bed pyrolysis of Norway spruce. Energy Fuels 28:5882–5891

    Article  CAS  Google Scholar 

  • Chen D, Zhou J, Zhang Q (2014a) Effects of torrefaction on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS. Energy Fuels 28:5857–5863

    Article  CAS  Google Scholar 

  • Chen WH, Huang MY, Chang JS, Chen CY (2014b) Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour Technol 169:258–264

    Article  CAS  Google Scholar 

  • Chen D, Li Y, Deng M, Wang J, Chen M, Yan B, Yuan Q (2016) Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood. Bioresour Technol 214:615–622

    Article  CAS  Google Scholar 

  • Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z (2018a) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237

    Article  CAS  Google Scholar 

  • Chen D, Gao A, Ma Z, Fei D, Chang Y, Shen C (2018b) In-depth study of rice husk torrefaction: characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Bioresour Technol 253:148–153

    Article  Google Scholar 

  • Di Blasi C (2009) Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci 35:121–140

    Article  Google Scholar 

  • Duygu DY, Udoh AU, Ozer TB, Akbulut A, Erkaya IA, Yildiz K, Guler D (2012) Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr J Biotechnol 11(16):3817–3824

    CAS  Google Scholar 

  • Ferreira AF, Soares Dias AP, Silva CM, Costa M (2015) Evaluation of thermochemical properties of raw and extracted microalgae. Energy 92:365–372

    Article  CAS  Google Scholar 

  • Gray MR, Corcoran WH, Gavalas GR (1985) Pyrolysis of a wood-derived material. Effects of moisture and ash content. Ind Eng Chem Process Des Dev 24(3):646–651

    Article  CAS  Google Scholar 

  • Grottola CM, Giudicianni P, Michel JB, Ragucci R (2018) Torrefaction of woody waste for use as biofuel. Energy Fuels 32(10):10266–10271

    Article  CAS  Google Scholar 

  • Ibrahim RHH, Darvell LI, Jones JM, Williams A (2013) Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrol 103:21–30

    Article  CAS  Google Scholar 

  • Kasparbauer RD (2009) The effects of biomass pretreatments on the products of fast pyrolysis. Iowa State University, Ames

    Book  Google Scholar 

  • Ma Z, Chen D, Gu J, Bao B, Zhang Q (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag 89:251–259

    Article  CAS  Google Scholar 

  • Ma Z, Wang J, Zhou H, Zhang Y, Yang Y, Liu X, Ye J, Chen D, Wang S (2018) Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel under different severities. Fuel Process Technol 181:142–156

    Article  CAS  Google Scholar 

  • Mao WJ, Fang F, Li HY, Qi XH, Sun HH, Chen Y, Guo SD (2008) Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym 74:834–839

    Article  CAS  Google Scholar 

  • Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1):147–154

    Article  CAS  Google Scholar 

  • Meesuk S, Cao JP, Sato K, Ogawa Y, Takarada T (2012) The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst. J Anal Appl Pyrol 94:238–245

    Article  CAS  Google Scholar 

  • Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H (2015) Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol 177:355–360

    Article  CAS  Google Scholar 

  • Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446

    Article  CAS  Google Scholar 

  • Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74

    Article  CAS  Google Scholar 

  • Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064

    Article  CAS  Google Scholar 

  • Ren S, Lei H, Wang L, Bu Q, Wei Y, Liang J, Liu Y, Julson J, Chen S, Wu J, Ruan R (2012) Microwave torrefaction of Douglas fir sawdust pellets. Energy Fuels 26(9):5936–5943

    Article  CAS  Google Scholar 

  • Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J, Julson J, Ruan R (2013) The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresour Technol 135:659–664

    Article  CAS  Google Scholar 

  • Ru B, Wang S, Dai G, Zhang L (2015) Effect of torrefaction on biomass physicochemical characteristics and the resulting pyrolysis behavior. Energy Fuels 29:5865–5874

    Article  CAS  Google Scholar 

  • Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy 28(3):427–434

    Article  CAS  Google Scholar 

  • Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37(5):933–942

    Article  CAS  Google Scholar 

  • Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7(5):384–401

    Article  Google Scholar 

  • Wang MJ, Huang YF, Chiueh PT, Kuan WH, Lo SL (2012) Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 37:177–184

    Article  CAS  Google Scholar 

  • Wang S, Dai G, Ru B, Zhao Y, Wang X, Zhou J, Luo Z, Cen K (2016) Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresour Technol 218:1106–1114

    Article  CAS  Google Scholar 

  • Wang S, Hu YM, Wang Q, Xu S (2017) Study of pyrolytic mechanisms of seaweed based on different components (soluble polysaccharides, proteins, and ash). J Renew Sustain Energy 9:023102

    Article  Google Scholar 

  • Xiao L, Zhu X, Li X, Zhang Z, Ashida R, Miura K, Luo G, Liu W, Yao H (2015) Effect of pressurized torrefaction pretreatments on biomass CO2 gasification. Energy Fuels 29(11):7309–7316

    Article  CAS  Google Scholar 

  • Zheng A, Zhao Z, Chang S, Zhuang Z, He F, Li H (2012) Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy Fuels 26:2968–2974

    Article  CAS  Google Scholar 

  • Zheng A, Zhao Z, Chang S, Huang Z, Wang X, He F, Li H (2013) Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour Technol 128:370–377

    Article  CAS  Google Scholar 

  • Zheng A, Jiang L, Zhao Z, Huang Z, Zhao K, Wei G, Wang X, He F, Li H (2015) Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29:8027–8034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51676091); and the China Postdoctoral Science Foundation (Nos. 2019T120408, 2018M630529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, S., Wang, Q. et al. Influence of torrefaction pretreatment on the pyrolysis characteristics of seaweed biomass. Cellulose 26, 8475–8487 (2019). https://doi.org/10.1007/s10570-019-02595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02595-7

Keywords

Profiles

  1. Abd El-Fatah Abomohra