Advertisement

Cellulose

, Volume 26, Issue 12, pp 7185–7194 | Cite as

Modification of cellulose nanofibre surfaces by He/NH3 plasma at atmospheric pressure

  • Yukihiro KusanoEmail author
  • Bo Madsen
  • Linn Berglund
  • Kristiina Oksman
Original Research

Abstract

Cellulose nanofibre coatings were treated by a dielectric barrier discharge plasma in a He/NH3 gas mixture at atmospheric pressure. Ultrasound was optionally irradiated during the treatment. The treatment enhanced the wetting of deionized water, glycerol, and uncured epoxy. Irradiation of ultrasound did not significantly change optical emission from the plasma, but increased the oxygen contents and enhanced etching and roughening at the nanofibre coating surfaces. Furthermore, the irradiation of ultrasound enhanced the wetting of deionized water and glycerol drastically, while that of uncured epoxy to some extent.

Keywords

Cellulose Nanofibre Plasma treatment Dielectric barrier discharge Ultrasound Wetting Surface roughening 

Notes

Acknowledgments

This study has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. FoF NMP2013-10-608746 (INCOM). Yvonne Aitomaki is acknowledged for scientific discussion. Technical supports on acoustics were provided from Niels Krebs (FORCE Technology, Denmark) and Alexander Bardenshtein (Danish Technological Institute, Denmark).

References

  1. Akovali G (ed) (1993) The interfacial interactions in polymeric composites. Nato science series E. Springer, DordrechtGoogle Scholar
  2. Becker K (2018) Asics is making your running shoes more durable, easier to run in. DIGITAL TRENDS. https://www.digitaltrends.com/outdoors/asics-cellulose-nanofibers-shoes/. Accessed 2 Jan 2019
  3. Drews J, Kusano Y, Leipold F, Bardenshtein A, Krebs N (2011) Ozone production in a dielectric barrier discharge with ultrasonic irradiation. Ozone Sci Eng 33:483–488.  https://doi.org/10.1080/01919512.2011.616153 CrossRefGoogle Scholar
  4. Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H (2005) Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasm Proc Polym 2:193–200.  https://doi.org/10.1002/ppap.200400051 CrossRefGoogle Scholar
  5. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Gliding arc gas discharge. Prog Energy Combust Sci 25:211–231.  https://doi.org/10.1016/S0360-1285(98)00021-5 CrossRefGoogle Scholar
  6. Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57(9):1353–1362.  https://doi.org/10.1351/pac198557091353 CrossRefGoogle Scholar
  7. Herrera M, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501.  https://doi.org/10.1016/j.carbpol.2014.06.036 CrossRefPubMedGoogle Scholar
  8. Herrera N, Matthew AJ, Oksman K (2015) Plasticized Polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155.  https://doi.org/10.1016/j.compscitech.2014.11.012 CrossRefGoogle Scholar
  9. Herrera M, Sirviö J, Mathew A, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin- and dip-coating. Mater Des 93:19–25.  https://doi.org/10.1016/j.matdes.2015.12.127 CrossRefGoogle Scholar
  10. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Proc 23(1):1–46.  https://doi.org/10.1023/A:1022470901385 CrossRefGoogle Scholar
  11. Kogoma M, Kusano M, Kusano Y (eds) (2011) Generation and applications of atmospheric pressure plasmas. NOVA Science Publishers, Inc., New YorkGoogle Scholar
  12. Kusano Y (2009) Plasma surface modification at atmospheric pressure. Surf Eng 25(6):415–416.  https://doi.org/10.1179/174329409X389281 CrossRefGoogle Scholar
  13. Kusano Y (2014) Atmospheric pressure plasma processing for polymer adhesion—a review. J Adhes 90(9):755–777.  https://doi.org/10.1080/00218464.2013.804407 CrossRefGoogle Scholar
  14. Kusano Y, Leipold F, Fateev A, Stenum B, Bindslev H (2005) Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification. Surf Coat Technol 200:846–8049.  https://doi.org/10.1016/j.surfcoat.2005.01.022 CrossRefGoogle Scholar
  15. Kusano Y, Andersen TL, Michelsen PK (2008) Atmospheric pressure plasma surface modification of carbon fibres. J Phys Conf Ser 100:012002.  https://doi.org/10.1088/1742-6596/100/1/012002 CrossRefGoogle Scholar
  16. Kusano Y, Singh SV, Bardenshtein A, Krebs N, Rozlosnik N (2010) Plasma surface modification of glass fibre reinforced polyester enhanced by ultrasonic irradiation. J Adhes Sci Technol 24:1831–1839.  https://doi.org/10.1163/016942410X507605 CrossRefGoogle Scholar
  17. Kusano Y, Norrman K, Drews J, Morgen P, Leipold F, Singh SV, Bardenshtein A, Krebs N (2011a) Gliding arc surface treatment of glass fiber reinforced polyester enhanced by ultrasonic irradiation. Surf Coat Technol 205:S490–S494.  https://doi.org/10.1016/j.surfcoat.2011.01.061 CrossRefGoogle Scholar
  18. Kusano Y, Singh SV, Norrman K, Drews J, Leipold F, Rozlosnik N, Bardenshtein A, Krebs N (2011b) Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement. J Adhes 87:720–731.  https://doi.org/10.1179/1743294411Y.0000000084 CrossRefGoogle Scholar
  19. Kusano Y, Drews J, Leipold F, Fateev A, Bardenshtein A, Krebs N (2012a) Influence of ultrasonic irradiation on ozone production in a dielectric barrier discharge. J Phys Conf Ser 406:012006.  https://doi.org/10.1088/1742-6596/406/1/012006 CrossRefGoogle Scholar
  20. Kusano Y, Singh SV, Norrman K, Drews J, Leipold F, Rozlosnik N, Bardenshtein A, Krebs N (2012b) Ultrasound enhanced plasma surface modification at atmospheric pressure. Surf Eng 28(6):453–457.  https://doi.org/10.1179/1743294411Y.0000000084 CrossRefGoogle Scholar
  21. Kusano Y, Norrman K, Singh SV, Leipold F, Morgen P, Bardenshtein A, Krebs N (2013a) Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure. J Adhes Sci Technol 27(7):825–833.  https://doi.org/10.1080/01694243.2012.727156 CrossRefGoogle Scholar
  22. Kusano Y, Sørensen BF, Andersen TL, Leipold F (2013b) Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment. J Adhes 89(6):433–459.  https://doi.org/10.1080/00218464.2013.759063 CrossRefGoogle Scholar
  23. Kusano Y, Andersen TL, Toftegaard HL, Leipold F, Bardenshtein A, Krebs N (2014a) Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement. Int J Mater Eng Innov 5(2):122–137.  https://doi.org/10.1504/IJMATEI.2014.060319 CrossRefGoogle Scholar
  24. Kusano Y, Salewski M, Leipold F, Zhu JJ, Ehn A, Li ZS, Aldén M (2014b) Stability of alternating current gliding arcs. Eur Phys J D 68:319.  https://doi.org/10.1140/epjd/e2014-50343-8 CrossRefGoogle Scholar
  25. Kusano Y, Zhu JJ, Ehn A, Li ZS, Aldén M, Salewski M, Leipold F (2015) Observation of gliding arc surface treatment. Surf Eng 31(4):282–288.  https://doi.org/10.1179/1743294414Y.0000000429 CrossRefGoogle Scholar
  26. Kusano Y, Berglund L, Aitomäki Y, Oksman K, Madsen B (2016) Gliding arc surface modification of carrot nanofibre coating—perspective for composite processing. IOP Conf Ser Mater Sci Eng 139(1):012027.  https://doi.org/10.1088/1757-899X/139/1/012027 CrossRefGoogle Scholar
  27. Kusano Y, Madsen B, Berglund L, Aitomäki Y, Oksman K (2018) Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surf Eng 34(11):825–831.  https://doi.org/10.1080/02670844.2017.1334411 CrossRefGoogle Scholar
  28. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125–138.  https://doi.org/10.1088/0963-0252/12/2/301 CrossRefGoogle Scholar
  29. Lee BJ, Kusano Y, Kato N, Naito K, Horiuchi T, Koinuma H (1997) Oxygen plasma treatment of rubber surface by the atmospheric pressure cold plasma torch. Jpn J Appl Phys 36:2888–2891.  https://doi.org/10.1143/JJAP.36.2888 CrossRefGoogle Scholar
  30. Matsuda C (2015) Cellulose nanofiber enhances writing experience. Nikkei Business Publications, Inc. https://tech.nikkeibp.co.jp/dm/atclen/news_en/15mk/091000034/. Accessed 2 Jan 2019
  31. Mortensen HJ, Kusano Y, Leipold F, Rozlosnik N, Kingshott P, Sørensen BF, Stenum B, Bindslev H (2006) Modification of glassy carbon surfaces by an atmospheric pressure cold plasma torch. Jpn J Appl Phys 45(10B):8506–8511.  https://doi.org/10.1143/JJAP.45.8506 CrossRefGoogle Scholar
  32. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159.  https://doi.org/10.1007/s00339-003-2225-2 CrossRefGoogle Scholar
  33. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206.  https://doi.org/10.1002/cjce.20554 CrossRefGoogle Scholar
  34. Pringle SD, Joss VS, Jones C (1996) Ammonia plasma treatment of PTFE under known plasma conditions. Surf Interf Anal 24:821–829.  https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<821::AID-SIA189>3.0.CO;2-B CrossRefGoogle Scholar
  35. Schutze A, Jeong JY, Babayan SE, Park JY, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694.  https://doi.org/10.1109/27.747887 CrossRefGoogle Scholar
  36. Siró I, Kusano Y, Norrman K, Goutianos S, Plackett D (2013) Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge. J Adhes Sci Technol 27(3):294–308.  https://doi.org/10.1007/s00339-003-2225-2 CrossRefGoogle Scholar
  37. Strobel M, Lyons CS, Mittal KL (eds) (1994) Plasma surface modification of polymers: relevance to adhesion. VSP, UtrechtGoogle Scholar
  38. Sun ZW, Zhu JJ, Li ZS, Aldén M, Leipold F, Salewski M, Kusano Y (2013) Optical diagnostics of a gliding arc. Opt Express 21(5):6028–6044.  https://doi.org/10.1364/OE.21.006028 CrossRefPubMedGoogle Scholar
  39. Teodoru S, Kusano Y, Rozlosnik N, Michelsen PK (2009) Continuous plasma treatment of ultra-high-molecular-weight polyethylene (UHMWPE) fibres for adhesion improvement. Plasm Proc Polym 6:S375–S381.  https://doi.org/10.1002/ppap.200930906 CrossRefGoogle Scholar
  40. Wikström L (2017) Industrial production processes for nanoreinforced composite structures. (INCOM) financed under EU FP7-FoF.NMP.2013-10. http://www.incomproject.eu/index.htm. Accessed 2 Jan 2019

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Section of Composite Materials, Department of Wind EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Division of Materials Science, Composite Centre SwedenLuleå University of TechnologyLuleåSweden

Personalised recommendations