Skip to main content
Log in

An effective metal controller used for enhancing cellulose protection in oxygen delignification

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Due to the detrimental effects induced by transition metals on oxygen delignification, it is necessary to explore effective cellulose protector for improving the oxygen delignification efficiency. In this work, chitosan/tripolyphosphate microspheres (C/TPP) with different size were prepared and introduced for alleviating the transition metal ions effects on cellulose degradation. The results showed that both size and amount of C/TPP had a significant effect on cellulose degradation but negligible influence on lignin; C/TPP with suitable amount and smaller size was favored for cellulose protection and thus selectivity improvement. C/TPP is found to be comparable to MgSO4 and more outstanding for the pulps with extra metals; in this case, C/TPP leads only a marginal impairment in lignin degradation and removal, but provides a significant improvement for cellulose viscosity. Moreover, C/TPP is substantially more effective when is used in a combination with MgSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bajpai P (2012) Environmentally benign approaches for pulp bleaching. Elsevier, Amsterdam

    Google Scholar 

  • Bassi R, Prasher SO, Simpson B (2000) Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep Sci Technol 35(4):547–560

    Article  CAS  Google Scholar 

  • Bouchard J, Morelli E, Berry R (2000) Gas-phase addition of solvent to ozone bleaching of kraft pulp. J Pulp Pap Sci 26(1):30–35

    CAS  Google Scholar 

  • Bouchard J, Wang J, Berry R (2011) MgSO4 vs. Mg(OH)2 as a cellulose protector in oxygen delignification. Holzforschung 65(3):295–301

    Article  CAS  Google Scholar 

  • Cao S, Ma X, Lin L, Huang F, Huang L, Chen L (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. BioResources 9(3):4528–4539

    Article  Google Scholar 

  • Chen SL (2002) Fundamental insight into the mechanism of oxygen delignification of kraft pulps: the influence of a novel carbohydrate protective system. Cell Chem Technol 36(5):495–505

    CAS  Google Scholar 

  • Cho AR, Chun YG, Kim BK, Park DJ (2014) Preparation of chitosan–TPP microspheres as resveratrol carriers. J Food Sci 79(4):568–576

    Article  CAS  Google Scholar 

  • Dence CW (1996) Chemistry of chemical pulp bleaching. In: Dence CW, Reeve DW (eds) Pulp bleaching-principles and practice. TAPPI Press, Atlanta, pp 125–159

    Google Scholar 

  • Ericsson B (1971) Factors influencing the carbohydrate degradation under oxygen-alkali bleaching. Svensk papperstidning 74(22):757–765

    CAS  Google Scholar 

  • Fernandes SC, de Oliveira IRW, Fatibello-Filho O, Spinelli A, Vieira IC (2008) Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sensor Actuat B Chem 133(1):202–207

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Granholm K, Harju L, Ivaska A (2009) Desorption of metal ions from kraft pulps. Part 1. Chelation of hardwood and softwood kraft pulp with EDTA. BioResources 5(1):206–226

    Google Scholar 

  • Guay D, Cole B, Fort R Jr, Genco J, Hausman M (2000) Mechanisms of oxidative degradation of carbohydrates during oxygen delignktcation. I. Reaction of methyl β-d-glucopyranoside with photochemically generated hydroxyl radicals. J Wood Chem Technol 20(4):375–394

    Article  CAS  Google Scholar 

  • Guay D, Cole B, Fort R Jr, Hausman M, Genco J, Elder T, Overly K (2001) Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. II. Reaction of photochemically generated hydroxyl radicals with methyl β-cellobioside. J Wood Chem Technol 21(1):67–79

    Article  CAS  Google Scholar 

  • Huang JF, Huang H, Ma XJ, Huang LL, Chen LH, Cao SL (2016) Effect of the particle size of magnesium hydroxide on the oxygen delignification of eucalyptus kraft pulp. Pap Sci Technol 35(5):1–9

    Google Scholar 

  • Jafari V, Labafzadeh SR, King A, Kilpeläinen I, Sixta H, van Heiningen A (2014) Oxygen delignification of conventional and high alkali cooked softwood Kraft pulps, and study of the residual lignin structure. RSC Adv 4(34):17469–17477

    Article  CAS  Google Scholar 

  • Jones PW, Williams DR (2002) Chemical speciation simulation used to assess the efficiency of environment-friendly EDTA alternatives for use in the pulp and paper industry. Inorg Chim Acta 339:41–50

    Article  CAS  Google Scholar 

  • Lapierre L, Berry R, Bouchard J (2003) The effect of magnesium ions and chelants on peroxide bleaching. Holzforschung 57(6):627–633

    Article  CAS  Google Scholar 

  • Laus R, Geremias R, Vasconcelos HL, Laranjeira MC, Fávere VT (2007) Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. J Hazard Mater 149(2):471–474

    Article  CAS  PubMed  Google Scholar 

  • Leh CP, Rosli WW, Zainuddin Z, Tanaka R (2008) Optimisation of oxygen delignification in production of totally chlorine-free cellulose pulps from oil palm empty fruit bunch fibre. Ind Crop Prod 28(3):260–267

    Article  CAS  Google Scholar 

  • Li W, Jiang X, Xue P, Chen S (2002) Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals. Chin Sci Bull 47(11):887–889

    Article  CAS  Google Scholar 

  • Liu Z, Cao Y, Yao H, Wu S (2013) Oxygen delignification of wheat straw soda pulp with anthraquinone addition. BioResources 8(1):1306–1319

    Google Scholar 

  • McDonough TJ (1996) Oxygen delignification. In: Dence CW, Reeve DW (eds) Pulp bleaching—principles and practice. TAPPI Press, Atlanta, pp 213–239

    Google Scholar 

  • Ngah WW, Endud C, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50(2):181–190

    Article  CAS  Google Scholar 

  • Park PJ, Je JY, Kim SK (2004) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55(1):17–22

    Article  CAS  Google Scholar 

  • Šelih VS, Strlič M, Kolar J, Pihlar B (2007) The role of transition metals in oxidative degradation of cellulose. Polym Degrad Stab 92(8):1476–1481

    Article  CAS  Google Scholar 

  • Sixta H, Süss HU, Potthast A, Schwanninger M, Krotscheck AW (2006) pulp bleaching: sections 7.1–7.3. 5. Handbook of pulp 609–708

  • Tao L, Genco JM, Cole BJ, Fort RC Jr (2011) Selectivity of oxygen delignification for southern softwood kraft pulps with high lignin content. Tappi J 10(8):29–39

    CAS  Google Scholar 

  • van Heiningen A, Violette S (2003) Selectivity improvement during oxygen delignification by adsorption of a sugar-based polymer. J Pulp Pap Sci 29(2):48–53

    Google Scholar 

  • van Heiningen A, Krothapalli D, Genco J, Justason A (2003) A chemical reactor analysis of industrial oxygen delignification. Pulp Pap Can 104(12):331–336

    Google Scholar 

  • van Heiningen A, Ji Y, Jafari V (2018) Recent progress on oxygen delignification of softwood kraft pulp. In: Cellulose science and technology: chemistry, analysis, and applications, pp 67–97

  • Wang B, Bai Z, Jiang H, Prinsen P, Luque R, Zhao S, Xuan J (2019) Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: characteristics, modeling and application. J Hazard Mater 364:192–205

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Lucia L, Ragauskas AJ, Jameel H (2003) Oxygen delignification chemistry and its impact on pulp fibers. J Wood Chem Technol 23(1):13–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31770632), National Key Research and Development Program of China (2017YFB0307900), Outstanding Youth Fund (XJQ201506) and Innovation Fund from Fujian Agriculture and Forestry University (CXZX2017296 and CXZX2017037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilin Cao or Xiaojuan Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hai Huang and Yuantao Hu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Hu, Y., Huang, L. et al. An effective metal controller used for enhancing cellulose protection in oxygen delignification. Cellulose 26, 7099–7106 (2019). https://doi.org/10.1007/s10570-019-02591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02591-x

Keywords

Navigation