Mechanical properties of cellulose nanofibril films: effects of crystallinity and its modification by treatment with liquid anhydrous ammonia

Abstract

The influence of cellulose crystallinity on mechanical properties of cellulose nano-fibrils (CNF) was investigated. Degree of crystallinity (DoC) was modified using liquid anhydrous ammonia. Such treatment changes crystal allomorph from cellulose I to cellulose III, a change which was reversed by subsequent boiling in water. DoC was measured using solid state nuclear magnetic resonance (NMR). Crystalline index (CI) was also measured using wide angle X-ray scattering (WAXS). Cotton linters were used as the raw material. The cotton linter was ammonia treated prior to fibrillation. Reduced DoC is seen to associate with an increased yield point and decreased Young modulus. Young modulus is here defined as the maximal slope of the stress–strain curves. The association between DoC and Young modulus or DoC and yield point are both statistically significant. We cannot conclude there has been an effect on strainability. While mechanical properties were affected, we found no indication that ammonia treatment affected degree of fibrillation. CNF was also studied in air and liquid using atomic force microscopy (AFM). Swelling of the nanofibers was observed, with a mean diameter increase of 48.9%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. https://doi.org/10.1007/s10570-009-9393-y (ISSN: 0969-0239)

    CAS  Article  Google Scholar 

  2. Barry AJ, Peterson FC, King AJ (1936) X-ray studies of reactions of cellulose in non-aqueous systems. I. Interaction of cellulose and liquid ammonia 1. J Am Chem Soc 58(2):333–337. https://doi.org/10.1021/ja01293a043 (ISSN: 002-7863)

    CAS  Article  Google Scholar 

  3. Brodin M et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664. https://doi.org/10.1016/j.jclepro.2017.05.209 (ISSSN: 09596526)

    CAS  Article  Google Scholar 

  4. Chinga-Carrasco G et al (2008) New advances in the 3D characterization of mineral coating layers on paper. J Microsc 232(2):212–224. https://doi.org/10.1111/j.1365-2818.2008.02092.x (ISSN: 00222720)

    CAS  Article  PubMed  Google Scholar 

  5. Codou A et al (2015) Partial periodate oxidation and thermal cross-linking for the processing of thermoset all-cellulose composites. Compos Sci Technol 117:54–61. https://doi.org/10.1016/j.compscitech.2015.05.022

    CAS  Article  Google Scholar 

  6. Dinand E et al (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I \(\rightarrow \) cellulose II. Cellulose 9(1):7–18. https://doi.org/10.1023/A:1015877021688 (ISSN: 09690239)

    CAS  Article  Google Scholar 

  7. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin. ISBN:978-3-11-025456-3

    Book  Google Scholar 

  8. Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://doi.org/10.1039/c6cs00895j

    CAS  Article  PubMed  Google Scholar 

  9. Fukuzumi H et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. https://doi.org/10.1021/bm801065u (ISSN: 1525-7797)

    CAS  Article  PubMed  Google Scholar 

  10. Ginestet C (2011) ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A (Stat Soc) 174(1):245–246. https://doi.org/10.1111/j.1541-0420.2011.01616.x (ISSN: 0006341X)

    Article  Google Scholar 

  11. Henriksson M (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. https://doi.org/10.1021/bm800038n (ISSN: 1525-7797)

    CAS  Article  PubMed  Google Scholar 

  12. Hermann CKF (1997) The shrinking dollar bill. J Chem Educ 74(11):1357. https://doi.org/10.1021/ed074p1357.2 (ISSN: 0021-9584)

    CAS  Article  Google Scholar 

  13. Hess K, Trogus C (1935) Über Ammoniak-Cellulose (Vorläuf. Mitteil.). Berichte der Dtsch Chem Gesellschaft (A B Ser) 68(10):1986–1988. https://doi.org/10.1002/cber.19350681016 (ISSN: 03659488)

    Article  Google Scholar 

  14. Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer (Guildf) 42(8):3309–3314. https://doi.org/10.1016/S0032-3861(00)00774-6 (ISSN: 00323861)

    CAS  Article  Google Scholar 

  15. Kono H, Numata Y (2004) Two-dimensional spin-exchange solid-state NMR study of the crystal structure of cellulose II. Polymer (Guildf) 45(13):4541–4547. https://doi.org/10.1016/j.polymer.2004.04.025 (ISSN: 00323861)

    CAS  Article  Google Scholar 

  16. Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29(17):5695–5699. https://doi.org/10.1021/ma9518058 (ISSN: 0024-9297)

    CAS  Article  Google Scholar 

  17. Kumar Kumar et al (2016) Influence of nanolatex addition on cellulose nanofiber film properties. Nord Pulp Pap Res J 31(02):333–340. https://doi.org/10.3183/NPPRJ-2016-31-02-p333-340 (ISSN: 0283-2631)

    CAS  Article  Google Scholar 

  18. Larsson PA, Wågberg L (2016) Towards natural-fibre-based thermoplastic films produced by conventional papermaking. Green Chem 18(11):3324–3333. https://doi.org/10.1039/c5gc03068d (ISSN: 1526-4602)

    CAS  Article  Google Scholar 

  19. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302(1–2):19–25. https://doi.org/10.1016/S0008-6215(97)00130-4 (ISSN: 00086215)

    CAS  Article  Google Scholar 

  20. Larsson PA, Berglund LA, Wågberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils. Biomacromolecules 15(6):2218–23. https://doi.org/10.1021/bm500360c

    CAS  Article  PubMed  Google Scholar 

  21. Lavoine N et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–64. https://doi.org/10.1016/j.carbpol.2012.05.026 (ISSN: 1879-1344)

    CAS  Article  PubMed  Google Scholar 

  22. Menachem L, Roldan LG (1971) The effect of liquid anhydrous ammonia in the structure and morphology of cotton cellulose. J Polym Sci Part C Polym Symp 229(36):213–229

    Google Scholar 

  23. Minelli M et al (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Memb Sci 358(1–2):67–75. https://doi.org/10.1016/j.memsci.2010.04.030 (ISSN: 03767388)

    CAS  Article  Google Scholar 

  24. Mittal A et al (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4(41):1–16. https://doi.org/10.1186/1754-6834-4-41 (ISSN: 1754-6834)

    CAS  Article  Google Scholar 

  25. Myllytie P et al (2010) Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose 17(2):375–385. https://doi.org/10.1007/s10570-009-9376-z (ISSN: 09690239)

    CAS  Article  Google Scholar 

  26. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Open Phys 10(1):181–188. https://doi.org/10.2478/s11534-011-0096-2 (ISSN: 2391-5471)

    Article  Google Scholar 

  27. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687. https://doi.org/10.1021/ma049300h (ISSN: 00249297)

    CAS  Article  Google Scholar 

  28. Nocanda X et al (2007) Cross polarisation/magic angle spinning 13C-NMR spectroscopic studies of cellulose structural changes in hardwood dissolving pulp process. Holzforschung 61(6):675–679. https://doi.org/10.1515/HF.2007.095 (ISSN: 1437434X)

    CAS  Article  Google Scholar 

  29. Nogi M et al (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. https://doi.org/10.1002/adma.200803174 (ISSN: 09359648)

    CAS  Article  Google Scholar 

  30. Okano T, Sarko A (1985) Mercerization of celluloseII. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332. https://doi.org/10.1002/app.1985.070300128 (ISSN: 00218995)

    CAS  Article  Google Scholar 

  31. Park SJ et al (2003) Effect of dry heat and hot water processings on cellulose III crystallite of cotton and lyocell fibers treated with liquid ammonia. Sen’i Gakkaishi 58(8):299–303. https://doi.org/10.2115/fiber.58.299 (ISSN: 0037-9875)

    Article  Google Scholar 

  32. Peciulyte A et al (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8(56):1–13. https://doi.org/10.1186/s13068-015-0236-9 (ISSN: 1754-6834)

    CAS  Article  Google Scholar 

  33. Perez S, Mazeau K (2005) Conformations, structures, and morphologies of celluloses. Polysacch Struct Divers Funct Versatility. https://doi.org/10.1201/9781420030822.ch2

    Article  Google Scholar 

  34. R Core Team (2015) R: a language and environment for statistical computing. https://doi.org/10.1017/CBO9781107415324.004

  35. Rodionova G et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19(3):705–711. https://doi.org/10.1007/s10570-012-9664-x (ISSN: 0969-0239)

    CAS  Article  Google Scholar 

  36. Rousselle MA et al (1976) Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical properties. Text Res J 46(4):304–310. https://doi.org/10.1177/004051757604600412 (ISSN: 00405175)

    CAS  Article  Google Scholar 

  37. Saapan A, Kandil SH, Habib AM (1984) Liquid ammonia and caustic mercerization of cotton fibers using X-ray, infrared, and sorption measurements. Text Res J 54(12):863–867. https://doi.org/10.1177/004051758405401212 (ISSN: 0040-5175)

    Article  Google Scholar 

  38. Sawada D et al (2014) The initial structure of cellulose during ammonia pretreatment. Cellulose 21(3):1117–1126. https://doi.org/10.1007/s10570-014-0218-2 (ISSN: 0969-0239)

    CAS  Article  Google Scholar 

  39. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–82. https://doi.org/10.1038/nmeth.2019 (ISSN: 1548-7105)

    CAS  Article  Google Scholar 

  40. Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003 (ISSN: 0040-5175)

    CAS  Article  Google Scholar 

  41. Stone JE, Scallan AM (1968) A structural model for the cell wall of water swollen wood fibres based on their accessibility to macromolecules. Cellul Chem Technol 2:343–358

    CAS  Google Scholar 

  42. Šturcova A et al (2004) Structural details of crystallinecellulose from higher plants. Biomacromolecules 5:1333–1339. https://doi.org/10.1021/bm034517p (ISSN: 15257797)

    CAS  Article  PubMed  Google Scholar 

  43. Syverud K, Stenius P (2008) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. https://doi.org/10.1007/s10570-008-9244-2 (ISSN: 0969-0239)

    CAS  Article  Google Scholar 

  44. Thao Ho TT et al (2013) Liquid ammonia treatment of (cationic) nanofibrillated cellulose/vermiculite composites. J Polym Sci Part B Polym Phys 51(8):638–648. https://doi.org/10.1002/polb.23241 (ISSN: 08876266)

    CAS  Article  Google Scholar 

  45. Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose III I. Macromolecules 39(8):2947–2952. https://doi.org/10.1021/ma060228s (ISSN: 0024-9297)

    CAS  Article  Google Scholar 

  46. Wang J et al (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28(25):9664–9672. https://doi.org/10.1021/la301030f (ISSN: 07437463)

    CAS  Article  PubMed  Google Scholar 

  47. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129. https://doi.org/10.1016/S0008-6215(98)00236-5 (ISSN: 00086215)

    CAS  Article  Google Scholar 

  48. Youssefian S, Rahbar N (2015) Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep 5:1–13. https://doi.org/10.1038/srep11116 (ISSN: 20452322)

    Article  Google Scholar 

  49. Youssefian S, Jakes JE, Rahbar N (2017) Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-02288-w (ISSN: 20452322)

    CAS  Article  Google Scholar 

  50. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives. Springer, Berlin. (e-)ISBN:978-3-540-73934-0

    Book  Google Scholar 

Download references

Acknowledgments

This work is performed as a part of the NORCEL Project: The NORwegian NanoCELlulose Technology Platform, initiated and led by The Paper and Fiber Research Institute (PFI) in Trondheim and funded by the Research Council of Norway through the NANO2021 Program (Grant 228147 Research Council of Norway). The Research Council of Norway is further acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab. Thanks are extended to CELSUR for providing cotton linters. Thanks are further extended to Jasna Stevanic Srndovic for assistance with NMR and WAXS measurements, Kelly McCammon-Ottesen for proof-reading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vegar Ottesen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ottesen, V., Larsson, P.T., Chinga-Carrasco, G. et al. Mechanical properties of cellulose nanofibril films: effects of crystallinity and its modification by treatment with liquid anhydrous ammonia. Cellulose 26, 6615–6627 (2019). https://doi.org/10.1007/s10570-019-02546-2

Download citation

Keywords

  • Degree of crystallinity
  • Mechanical properties
  • Swelling
  • Cellulose nanofibrils