Skip to main content

Advertisement

Log in

One-step fabrication of imprinted mesoporous cellulose nanocrystals films for selective separation and recovery of Nd(III)

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Previously, we investigated imprinted silica films templated by cellulose nanocrystals for the selective adsorption of rare earth ions from acidic systems, but the cost of organosilane limits the application of silica film adsorbents. Considering the cost and outstanding properties of cellulose, converting this renewable biological resource into an adsorbent material is a vital step towards sustainable development. One-step fabrication of imprinted mesoporous cellulose nanocrystals films (IMCFs) was implemented via ionic imprinting technology and they were applied to efficiently and selectively separate neodymium ions [Nd(III)]. Transmission photographs clearly demonstrated there is a highly ordered mesoporous structure after removal of silicon source. Nitrogen adsorption measurements showed two obtained materials possess high specific surface area, providing a good premise for efficient separation. When employed as absorbents, the maximum adsorption capacity of IMCFs is almost three folds than that of NIMCFs, reaching 18.22 mg g−1. The distribution coefficient of IMCFs for Nd(III) reached 435.46 mL g−1, much higher than other interfering ions. Repeatability tests showed IMCFs retained 81.55% of initial adsorption capacity after five adsorption cycles. In summary, this work presents a new avenue to construct imprinted mesoporous cellulose nanocrystals films for separation of rare earth ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bian Y-Y, Guo S-Q, Xu Y-L, Tang K, Lu X-G, Ding W-Z (2015) Recovery of rare earth elements from permanent magnet scraps by pyrometallurgical process. Rare Met. https://doi.org/10.1007/s12598-015-0554-x

    Article  Google Scholar 

  • Chen Y, Wang H, Pei Y, Ren J, Wang J (2015) pH-controlled selective separation of neodymium (III) and samarium (III) from transition metals with carboxyl-functionalized ionic liquids. ACS Sustain Chem Eng 3:3167–3174. https://doi.org/10.1021/acssuschemeng.5b00742

    Article  CAS  Google Scholar 

  • Dai X, Wu S, Li S (2018) Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. J Chin Adv Mater Soc 6:91–111. https://doi.org/10.1080/22243682.2018.1425904

    Article  CAS  Google Scholar 

  • Dolak İ, Keçili R, Hür D, Ersöz A, Say R (2015) Ion-imprinted polymers for selective recognition of neodymium(III) in environmental samples. Ind Eng Chem Res 54:5328–5335. https://doi.org/10.1021/acs.iecr.5b00212

    Article  CAS  Google Scholar 

  • Du E, Li J, Zhou S, Zheng L, Fan X (2018) Transformation of naproxen during the chlorination process: products identification and quantum chemistry validation. Chemosphere 211:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8

    Article  CAS  Google Scholar 

  • eFlorek J, Chalifour F, Bilodeau F, Lariviere D, Kleitz F (2014) Nanostructured hybrid materials for the selective recovery and enrichment of rare earth elements. Adv Funct Mater 24:2668–2676

    Article  CAS  Google Scholar 

  • Fröhlich P, Lorenz T, Martin G, Brett B, Bertau M (2017) Valuable Metals—recovery processes, current trends and recycling strategies. Angew Chem Int Ed 56:2544–2580. https://doi.org/10.1002/anie.201605417

    Article  CAS  Google Scholar 

  • Fu J, Chen L, Li J, Zhang Z (2015) Current status and challenges of ion imprinting. J Mater Chem A 3:13598–13627

    Article  CAS  Google Scholar 

  • Gao Y, Jin Z (2018) Iridescent chiral nematic cellulose nanocrystal/polyvinylpyrrolidone nanocomposite films for distinguishing similar organic solvents. ACS Sustain Chem Eng 6:6192–6202

    Article  CAS  Google Scholar 

  • Johannesson KH et al (2017) Rare earth element behavior during groundwater-seawater mixing along the Kona Coast of Hawaii. Geochim Cosmochim Acta 198:229–258. https://doi.org/10.1016/j.gca.2016.11.009

    Article  CAS  Google Scholar 

  • Krishna PG, Gladis JM, Rao TP, Naidu GR (2005) Selective recognition of neodymium(III) using ion imprinted polymer particles. J Mol Recognit 18:109–116

    Article  CAS  PubMed  Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  • Li B, Zhang Y, Wu C, Guo B, Luo Z (2018) Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid). Carbohydr Polym 198:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2015) Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr(II) from aqueous solution. Colloid Polym Sci 293:109–123. https://doi.org/10.1007/s00396-014-3393-7

    Article  CAS  Google Scholar 

  • Melnyk IV, Goncharyk VP, Kozhara LI, Yurchenko GR, Matkovsky AK, Zub YL, Alonso B (2012) Sorption properties of porous spray-dried microspheres functionalized by phosphonic acid groups. Microporous Mesoporous Mater 153:171–177. https://doi.org/10.1016/j.micromeso.2011.12.027

    Article  CAS  Google Scholar 

  • Moloney MP, Causse J, Loubat C, Grandjean A (2014) Sodium “Activation” of silano-phosphonate modified mesoporous TiO2 leading to improved rare-earth element extraction. Eur J Inorg Chem 2014:2268–2277

    Article  CAS  Google Scholar 

  • Moriwaki H et al (2016) Application of freeze-dried powders of genetically-engineered microbial strains as adsorbents for rare earth metal ions 8:26524–26531

    CAS  Google Scholar 

  • Pan J, Chen W, Ma Y, Pan G (2018) Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 47:5574–5587

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Roy E, Madhuri R, Sharma PK (2017) Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon. ACS Sustain Chem Eng 5:6910–6923. https://doi.org/10.1021/acssuschemeng.7b01124

    Article  CAS  Google Scholar 

  • Royen H, Fortkamp U (2016) Rare earth elements-purification, separation and recycling. IVL Swedish Environmental Research Institute, Stockholm, Sweden

    Google Scholar 

  • Service RF (2005) How far can we push chemical self-assembly? Science 309:95. https://doi.org/10.1126/science.309.5731.95

    Article  CAS  PubMed  Google Scholar 

  • Sprecher B, Kleijn R, Kramer GJ (2014) Recycling potential of neodymium: the case of computer hard disk drives. Environ Sci Technol 48:9506–9513. https://doi.org/10.1021/es501572z

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  PubMed  Google Scholar 

  • Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403

    Article  CAS  Google Scholar 

  • Terpstra AS, Arnett LP, Manning AP, Michal CA, Hamad WY, MacLachlan MJ (2018) Iridescent chiral nematic mesoporous organosilicas with alkylene spacers. Adv Opt Mater 6:1800163

    Article  CAS  Google Scholar 

  • Tunsu C, Petranikova M, Ekberg C, Retegan T (2016) A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep Purif Technol 161:172–186. https://doi.org/10.1016/j.seppur.2016.01.048

    Article  CAS  Google Scholar 

  • Vlachou A, Symeopoulos B, Koutinas A (2009) A comparative study of neodymium sorption by yeast cells. Radiochim Acta Int j Chem Aspects Nucl Sci Technol 97:437–441

    CAS  Google Scholar 

  • Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nanomaterials 7:57

    Article  CAS  PubMed Central  Google Scholar 

  • Wang J, Han Y, Li J, Wei J (2017) Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization. Sep Purif Technol 177:62–70. https://doi.org/10.1016/j.seppur.2016.12.038

    Article  CAS  Google Scholar 

  • Wei X, Xu G, Gong C, Qin F, Gong X, Li C (2018) Fabrication and evaluation of sulfanilamide-imprinted composite sensors by developing a custom-tailored strategy. Sens Actuators B Chem 255:2697–2703

    Article  CAS  Google Scholar 

  • Won SW, Kwak IS, Mao J, Yun Y-S (2015) Biosorption–incineration–leaching–smelting sequential process for Ru recovery from Ru-bearing acetic acid waste solution. Ind Eng Chem Res 54:7148–7153. https://doi.org/10.1021/acs.iecr.5b01111

    Article  CAS  Google Scholar 

  • Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    Article  CAS  Google Scholar 

  • Xue J, Song F, Yin X-W, Zhang Z-L, Liu Y, Wang X-L, Wang Y-Z (2017) Cellulose nanocrystal-templated synthesis of mesoporous TiO2 with dominantly exposed (001) facets for efficient catalysis. ACS Sustain Chem Eng 5:3721–3725

    Article  CAS  Google Scholar 

  • Yao K, Meng Q, Bulone V, Zhou Q (2017) Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv Mater 29:1701323. https://doi.org/10.1002/adma.201701323

    Article  CAS  Google Scholar 

  • Yoon H-S, Kim C-J, Jeon S, Ilhwan P, Yoo K, Jha M, Chung KW (2015) The effect of grinding and roasting conditions on the selective leaching of Nd and Dy from NdFeB Magnet Scraps. Metals 5:1306–1314. https://doi.org/10.3390/met5031306

    Article  CAS  Google Scholar 

  • Zhao Y, Yu RL, Hu GR, Lin XH, Liu XR (2017) Characteristics and environmental significance of rare earth elements in PM2.5 of Nanchang, China. J Rare Earths 35:98–106. https://doi.org/10.1016/s1002-0721(16)60179-5

    Article  CAS  Google Scholar 

  • Zheng X, Liu E, Zhang F, Yan Y, Pan J (2016) Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag. Green Chem 18:5031–5040

    Article  CAS  Google Scholar 

  • Zheng X, Zhang F, Liu E, Xu X, Yan Y (2017) Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films. ACS Appl Mater Interfaces 9:730–739. https://doi.org/10.1021/acsami.6b13049

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Zhang Y, Zhang F, Li Z, Yan Y (2018) Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. J Hazard Mater 353:496–504. https://doi.org/10.1016/j.jhazmat.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Wang Y, Qiu F, Li Z, Yan Y (2019a) Dual-functional mesoporous films templated by cellulose nanocrystals for the selective adsorption of lithium and rubidium. J Chem Eng Data 64:926–933

    Article  CAS  Google Scholar 

  • Zheng X, Zhang Y, Bian T, Zhang Y, Zhang F, Yan Y (2019b) Selective extraction of gadolinium using free-standing imprinted mesoporous carboxymethyl chitosan films with high capacity. Cellulose 26:1209–1219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Nos. 21576120, 21446015, 21507045, 21876015, 21808018, U1407123, U1507115 and U1507118) and Natural Science Foundation of Jiangsu Province (Nos. BK20140534, BK20140580, BK20151350 and BK20131223). Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX18_0958).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Zheng or Zhongyu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2019_2482_MOESM1_ESM.docx

The following is Supplementary materials to this article: The instrument used for characterization and adsorption experiments in experimental section. Some of experimental data and figures are also included in it. (DOCX 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhang, Y., Bian, T. et al. One-step fabrication of imprinted mesoporous cellulose nanocrystals films for selective separation and recovery of Nd(III). Cellulose 26, 5571–5582 (2019). https://doi.org/10.1007/s10570-019-02482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02482-1

Keywords

Navigation